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P REEFACE

This report is a complete self-contained document which
describes all as- ects of the metnod and associated program
MOMENTS-II for computing various properties of asymmetric
objects. it is divided into three chapters, entitled User's
Guide, Programmer's Guide and Analyst's Guide, which as the
titles indicate, are directed towards the user, programmer
and analyst respectively. The first chapter explains the
basics of the program and should therefore be read by
those in all three of these categories; this chapter alone
should suffice to enable one to use the program successfully.
The programmer, who may wish to modify the coding, should
read Chapter 2 also, and the analyst, who may wish to examine
the derivations of the formulae used by the program, should
read Chapter 3 also.

The numbering system is the standard type, where the
designation 1.2.3 refers to sub-section 3 of section 2 in
Chapter 1. The equations are all in Chapter 3 and they
are numbered consecutively from (1) to (7i).

In general, any notation relating especially to the
content of a single section of the report is summarized
at the beginning of that section. Also, certain terms
such as the word "Part", have been written with an initiaJ.
capital letter to indicate that they have special meanings
in this report. Finally, all FORTRAN names and variables have
bean written completely capitalized as per standard practice
for easy identification.

The Appendices contain the listings of the input cards
and the output from each of the four sample cases explained
in 1.5.1 to 1.5.4.
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INTRODUCTION

The purpose of the computer program MOMENTS-II is to
calculate certain physical and geometric properties, such
as moments and products of inertia, center of gravity, mass,
volume and principal axes of asymmetric bodies. It differs
from other programs in that MOMENrS-II actually handles a
wide range of asymmetric objects and it can calculate the
moments and products with respect tn arbitrary rectangular
coordinate systems.

The present program is an expandel and greatly modified
extension of MOMENTS as described in Ref. 2. The capabilities
of the present version, beyond those of the original consist
of accepting more types of solids and of rotating and/or
translating moments and products to arbitrary coordinate
systems, each described by their origin and direction cosines.
The inclusion of new types of solids has been directed
towards applying the program to analyzing objects, working
from their blueprints. The rotating and translating capa-
bility greatly increases the flexibility and utility of the
program, for it allows one to describe each Part (fbr input
purposes) with respect to convenient sets of axes, rather
than requiring that all Parts be described with respect to
some one fixed system. The simple computation of the three
Euler angles which was contained in the original version
has been removed because of the great variety of definitions
of these angles used in practice. It is more reasonable that
the user who requires the calculation of these angles add his
own subroutine to compute them according to the definition
he prefers.

The method used by MOMENTS-II requires that the object
to be analyzed be represented or modelled by combinations
of certain types of solids, which can be located and oriented
in an arbitrary manner. The great versatility of this pro-
gram is derived from such considerations as the following:
the allowable solids include boti individual and combinations
of different sectors of frusta of cones which are not sym-
metric about any axis, rather than restricting the program
to complete frusta, and the allowable solids include both
wedges and trapezoidal prisms, rather than being restricted
to rectangular parallelepipeds. The present program is in
this respect significantly more general than other prog:ams
of its kind which can generally handle composite objects
which must be represented as collections of simple axi-sym-
metric solids only.



The major presont applications of MOPUNTS-II are in
measuring shell imbalances for determining proper machine

tolerances for shell dimensions, arnd in computing the moments
and products of inertia of objects (such as rotors) which
are used in fuze mechanisms. However, a wide range of
applications are possible, and any field requiring the
calculation of the properties computed by MOMENTS-II could
make use of the program.
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1.0 USER'S GUIDE

This chapter provides the information necessary to
use the computer program MM.-U4TS-II to calculate the
moments and products of inertia and certain other
physical properties of solid objects, with respect to
any rectangular coordinate system. It explains the basic
mo)del used by the program, describes the "Parts" into
which all objects to be analyzed must be modellcd, and
contains an input guide, output guide and (explained)
sample cases. This chapter should be considered
as a single unit, in that no portion of it short of the
complete chapter should be expected to suffice as an
explanation of how one uses MOMEINTS-II.

1.1 MOM.ENTS-II MODEL

This section describes the model employed by
MOMENTS-II in calculating the various properties of
objects. Sub-section 1.1.1 contains a list and a
brief definition of the various properties which
MOMENTS-II is capable of calculating as well as the
notation used in Chapter 1 to represent them. In
order to compute these properties for a given object,
that object must first be "modelled" into (i.e., decom-
posed into or approximated by) any number of specific
types of solid bodies which shall be called "Parts" and
which may be considered as the building blocks upon which
the MOMENTS-II program is based. Sub-section 1.1.2
contains an explanation of this concept and how Parts
are described to the program, and 1.1.3 contains a
further explanation of the Rotation/Translation infor-
mation used to describe their position and orientation.
This requires the use of various coordinate systems,
and sub-section 1.1.4 briefly characteTizes those systems
used by MOMENTS-II.

3



1.1.1 Notation for Physical Properties

The following table lists all the properties
of objects with which MOMENTS-II is concerned. In
general, the density p is given, whereas the other
propertiez listed below must be computed (for each

* Part as well as for the entire body). Those quantities
denoted by (*) are computed solely for the purpose of
calculating the ones appearing on the line immediately
following them.

Mathematical

Symbol Explanation Definition

p Density

V Volume !ffdxdydz

m Mass fffpdxdyd z

Myz,Mxz,Mxy(*) First moments of inertia
about yz, xz and xy-
planes fffxdm, etc.

x, y, z Coordinates of center Myz/za, etc.
of gravity

ix 2 ,iy 2uIz2 (*) Second moments of
ineztia about yz, xz,
and XY-planes" f fx 2 dm, etc.

Ixx, Iyy, Izz Moments of inertia about
x, y, and z-axes fff(y2+z2 ) dm, etc.

Ixz, Iyz, Ixy Products of inertia -fffxzdm, etc.

4



1.1.2 Method of Par:F

Onc uses the 1 OMI:NTS-II program to compute certain
properties of objects, ith resfp>!ct to an arbitrary set
of rectangular coordinite axes, called "Reference Axes",
which art- chosen by th' user. Before the program can
compute the properties of an object, one must first dLscribe
to it the size, shape ina d.!nsity of the object as well
as the location and oi jentation of the object in the
Reference System. In order to accomplish this, the user
must represent or approximate the actual object by a
cobd)ination of any nunber of the following four specific
types of solids, namely sectors of frusta of cones (some-
times referred to as conical wedges) and combinations of
sectors, right angle wedges (and truncated wedges), angular
wedges, and "concave sectors". These four types of solids,
generically called "Parts", will be referred to as "BaAic
Parts", "Standard Wedcves", "Angular Wedges", and "Concave
Parts" respectively. They will be described in detail in
section 1.2 and are illustrated in Figures 2 to 5. Thus, in
order to use MOMENTS-II tc calculate the required properties
(as listed in 1.1.1) for a particular object, that
object must first be approximated by a combination of
one or more of the four types of Parts listed above.
.;y des.cribing each of the Parts making up the object
individually (i.e., shape, size, density as well as
location and orientation in the Reference System) to the
program, one is thnereby providing 4.t with a complete
description of the m.odel of the actual object. MO1ENTS-II
can then calculate the properties of these Parts one
at a time and combine them so as to obtain the properties
of the composite object. The resulting properties
computed by MOMENTS-Il a-e virtuwlly exact for the model
or combination of Parts described by the user, but the
accuracy relative to the actual object is determined by
the quality of the model the user has constructed to
represent it. It will be seen 'tat the Parts avail-
able for nmodelling objects are sufficiently flexible
so that they can be used to quite accurately represent
a wide class of objects.

From these remarks one can obsarve that the basic
tasks of the user are the modelling of the object by
Parts and the describing of the object to MOMENTS-II,
the latter being equivalent to describing the Parts
comprising the object to the Frogram. The first task
i's illustrated in the sample cases in 1.5 and the second
is the subject of the remainder of this sub-section.

5
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An object is considered to be completely described
to MOMENTS-II when the type, dimensions, location and
orientation (with respect to the Reference System) of
each Part making up the object have been specified. The
type and dimensions of a Part are specified by what shall
be called Dimensional information. To simplify the
method of describing the location and orientation of
the Parts with respect to the Reference System, a slight-
ly indirect approach is taken. Each Part is assigned
a set of three orthogonal axes called "Input Axes", which,
when chosen by the user subject to certain restrictions,
are then rigidly fixed to the Part. One describes the
position and orientation of the Part in the Reference
System by specifying the position and orientation of the
Part's attached Input System with respect to the
Reference System. This data used to describe each
Part may then be regarded as consisting of three basic
types, Dimensional information, Input System information
and Positional or "Rotation/Translation" information.

The Dimensional information consists of the values
for the quantities which describe the shape, density
and size of Parts. Examples are the specification of
which type of solid the Part is, as well as such quan-
tities as lengths, widths, densities, radii and heights.

The Input System information consists of all data
describing the location and crientation of the Part with
respect to its Input System, even though it may (impli-
citly) contain some information of a Dimensional nature
also. Because the direction of a Part's Input System
z-axis is fixed relative to the Part and because it is
required that this axis pass through a particular point
in the Part, the user must always specify the lower z-
coordinate (DZ) of the Part (to locate it along the z-
axis), and except for the Standard Wedge, also the two
angles TH(l) and TH(2) which define the rotational position
of the Part about this z-axis. These quantities DZ,
TH(1), and TH(2) are referred to as Input System data
even though when specifying the lower and upper angles
one then is fixing not just the angular position of the
Pairt (or sector of a Part) bat also its angular measure
TH(2) - TH(1), which is actually one of its dimensions.

6
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Finally, the Positional or Rotation/Translation
information locates the Input System relative to the
(fixed) Reference System, by specifying the direction
cosines of the Input Axes with respect to the Reference
System (Rotation information) and/or the origin of the
Input System in Reference System coordinates (Translation
information). In short, a Part is then unambiguously
described and located in r.ilation to the Reference
System by its Dimensional, Input System, and Positional
information.

It should be evident from the definition of Input
System information that the rethod of locating a specific
Part is not unique, but rather, since the user has some
freedom in positioning a Part in its Input System, there
are an infinite number of ways of describing any one-Part.
The major reason for such a formulation is that it facili-
tates the inputting of objects with constant cross sections
(in the xy-plane) which can almost be considered as two-
dimensional objects. This is illustrated in Sample Case 3
(see 1.5.3) in which all Parts have their input Axes parallel
to the Reference Axes. In such a case the use of the
minimum z-coordinate DZ may allow one to describe Parts
making up an object with a minimal amount of Translation
information, because when the only displacement of the
Input System origin is in the z-direction (that is, when
the origin of the Part's Input System lies on the Reference
System z-axis), DZ alone can serve to describe this dis-
placement without requiring any Translation information.
More than half of the Parts in Sample Case 3 use DZ to make
Translation information unnecessary. Furthermore, the use
of the angles TH(l) and TH(2) allows one to describe all
of the Parts making up an object whose Input z-axis is
parallel to the Reference z-axis without the need for Rotation
information. In fact, none of the Parts in Sample Case 3
require Rotation information at all for this reason. Even
in cases where the above special conditions hold for either
the x or y-axis instead of for the z-axis, sirmle Rotation
in2ormation describing merely interchanges of axes will
suffice in place of more complicated Rotation information.
If one insists on removing this non-uniqueness, one can
choose the Input System in such a way as to require that
the lower angle TH(l) (where applicable) and the minimum
Input System z-coordinate DZ of any Part both be zero always.
This would remove any control the user has in choosing the
Input System and would insure that descriptions of inputted
Parts would be unique; but as stated above, it would have
the disadvantage of making Rotation/Translation information
necessary for almost every Part. This is equivalent to
requiring nine direction cosines instead of just one angle,
and three coordinates of a point instead of just one
displacement, in almost all cases.

7



Once MOMENTS--II has available to it the Dimensional
and Input System information for a Part, the program
first calculates its properties with respect to its
Input Axes and secondly uses the Positional information
(if included) to calculate these properties with respect
to the Reference System. These calculations are
repeated for each Part (except see below for "Known
Parts") and thirdly the program sums these properties
to obtain those of the entire object with respect. to
the Reference System. Finally, it calculates the
center of gravity and the principal moments with respect
to the CG-System of the overall body.

For more flexibility, in addition to the four types
listed above, MOMENTS-II possesses the capability of
accepting "Known Parts" for which all the required pro-
perties are already known (w.ith respect to any coordinate
system wtith origin at the Part's center of gravity). For
Known Parts', none of the first type calculations are
necessary, but the others are required because their
(known) properties must still be translated to the
Reference System and combined with those of the other
Parts, in order to obtain the desired properties of the
overall body.

1.1.3 Rotation and Translation Information

This subsection describes in more detail the
Rotation/Translation (Positional) information which is
used to specify the location and orientation of each
Input System relative to the Reference System. Explana-
tions of the use of Rotation/Translation information in
conjunction with both Unknown and Known Parts are
presented here.

Rotation information describes the orientation of
a Part's Input System relative to the Reference System,
and it consists of the nine direction cosines RM(I,J) of
the Input Axes (the i, j, and k vectors in the Input
System) with respect to the Reference Axes. For each
Part, this information is- necessary only if its Input
Axes are not parallel (respectively) to the Reference
Axes; if the two systems are parallel this Rotation in-
formation is not necessary. For each Part, the value of
an input variable (NR) indicates whether Rotation
information is included.

8



Translation information describes the location of
the Input System relative to the Reference System, and
it consists of the three Reference System Coordinates
(XP, YP, ZP) of the origin of the Input System. For

Unknown Parts, this information is necessary only if
the origin of the Inout and Reference Systems do not
coincide; if they are the same, it is not necessary.
For Known Parts, the user must always specify the
Reference coordinates (CGX, CGY, CGZ) of the center of
gravity of the Part, which must also be the coordinates
of the origin of its Input System. Therefore, this
center of gravity data replaces any extra Translaticn
information, the latter not permitted for Known Parts.
For each Unknown Part, tHe~value of an input variable
(NTR) indicates whether Translation information is
included; this variable does not apply for Known Parts.

Rotation/Translation information is also useful
in applications requiring more than one computer run,
such as when one would like to use the results of a
MOMXNTS-II run to simplify the inputs to a succeeding
run. If an object has been modelled, the input cards
prepared, and a run of the program made, one could easily
re-position any Parts of the object with respect to the
Reference System (for the next run) by merely changing
the appropriate Rotation/Translation information, with-
out having to change any of the Dimensional inputs.

To obtain the properties of an object (which has
already been run through MOMENTS-II) but with respect to
a new Reference System, one may use the initial results
(e3t-Wer with respect to the previous CG or Principal
Axes) as inputs, considering the object in the next
run as a single Known Part, by using the proper Rotation
information. This can be further explained as follows:
among the output from MOMENTS-II are the moments and
products of inertia with respect to the Reference System,
with respect to the CG-System, and with respect to the
Princi'pal Axes. Since the moments and products of inertia
to be supplied for a Known Part must be with respect to
its Input System which must have its origin at the CG
of the Part, these initial results to be used as inputs
for the next run may be either with respect to the previous
"CG-Axes" or with respect to the previous Principal Axes
(both of which have their origins at the CG of the object).
The Rotation information will then be the direction cosines

9



of either the CG-Axes (these are the same as those of the
old Reference Axes because the two systems are parallel)
o-r of the Principal Axes with respect to the new Reference
Axes respectively. The former will generally be easier to
find because one may become accustomed to picturing objects
in terms of the original Reference System. These moments
and products, together with the coordinates of the CG
of the Part with respect to the Reference Axes (and
the moments, volume, and mass) locate and describe
the object completely relative to the new Reference Axes
and enable MOMENTS-II to calculate the required properties
relative to these new axes.

1.1.4 Coordinate Systems Used by MOMENTS-II

There are basically four types of coordinate
systems (sets of othogonal axes) which are used repeatedly
by MOMENTS-II. The following outlines the definitions
of each of these:

1. Reference System - This set of axes pro-
vides a single overall coordinate system with respect
to which all Parts are (indirectly) described. If
one needs to find the properties of a body with respect
to a particular set of axes, these should be considered
as the Reference Axes. Their position is only meaningful
relative to that of the object to be analyzed. The
position of each Part is specified relative to its
Input System by Input System data, and the position of each
set of Input System Axes is specified relative to the fixed
Reference System (i.e., in Reference Coordinates) by Positional
information. Together, these completely describe the
position and orientation of each Part with respect to the
Reference Axes. Aside from this Rotation/Translation
information, only the center of gravity of Known Parts
must be inputted in Reference Coordinates.

The moments and products of the overall body with
respect to the Reference System are printed on the last
page of the program's output. They cannot generally be
used as inputs in treating the object as a Known Part
in later runs because the origin of the Reference System
does not usually coincide with the center of gravity
of the object.

10



2. Input Systems- Each Part must be assigned
an Input System which is fixed in relation to the Part as
restricted in section 1.2 and illustrated in Figures 1 to 5.
However the user is somewhat free to position the Input
System by specifying the Part's minimum z-coordinate DZ
in this system and possibly the lower and upper angles
TH(l), TH(2) describing the Part's rotation about this
z-axis. The only other restriction is that the Input
System of a Known Part must have its origin at the center
of gravity of the Part, which is specified with respect to
the Reference System-

Rotation/Translation inputs locate the Input Systems
relative to the Reference System, but if an Input System
coincides with the Reference System, no Rotation or Trans-
lation information is necessary. If an Input System is
not parallel to the Reference System, Rotation information
is-necessary for that Part and if the origin of an Input
System does not coincide with the origin of the Reference
System, Translation information is necessary. If both
of these conditions are present, then both Rotation and
Translation information (in that order) are required
for the Part.

3. CG-System - This system is simply a set
of axes which are parallel (respectively) to the Reference
Axes but have their origin at the center of gravity (CG)
of the entire object being analyzed. The moments and
products of inertia of the object computed in this systemare included in the program's output and can be used (they
are probably the easiest to use for this purpose) as

¶ inputs in treating the same object as a Known Part in
succeeding runs of MOMENTS-II.

4. Principal Axis System - This system has
its origin at the center of gravity of the overall
object; two of the axes in this system are defined in
the directions of maximum moment and minimum moment
and the third direction is chosen so as to form a (right
handed) orthogonal coordinate system.

The principal moments are also included in The
output from the program; they are actually the moments
of inertia with respect to the Principal Axis System.
The products of inertia with respect to this system are
by definition zero. These movients can also be used
as inputs in treating the objct as a Known Part in
succeeding computer runs.

11



i .2 TYPES OF PARTS

This section describes the four types of Unknown Parts
which are shown with their Input Systems in Fiqures 2-5, as
well as a fifth type, the Known Part. This includes further
explanations of the Dimensional and Input System information
necessary to describe each type of Part. The actual FORTRAN
names of the inputs are shown on the figures and the format
and order of the input cards used to feed this information
to the programt are described in the Input Guide, section 1.3.

1.2.1 Basic Parts

The first type of solid acceptable to MOMENTS-II
is called a Basic Part; it is defined as a collection of
one or more adjacent sectors (conical wedges), each taken
from a (possibly different) right circular frustum of a cone
whose axis defines the Input System z-axis of the Basic Part.
Even though a single right circular frustum of a cone is
symmetric about its axis, the Basic Part, being a combina-
tion of different sized sectors, will not usually be
symmetric about its Input System z-axis (the common axis
of all its sectors). These individual sectors of frusta
of cones are the building blocks of all Basic Parts; for
this reason they will be referred to as "Prototype Sectors".

There are five allowable kinds of Basic Parts (indicated
to the program by the value of NTYPE), the simplest of
these consisting solely of a single "Prototype Sector".
This kind is sometimes referred to as a "Floating Sector"
because it requires the specification of both its lower
and its upper angles (its lower angle is "free-floating")
rather than requiring the lower angle to be 0Q as is the
case for the other four kinds of Basic Parts. A Prototype
Sector is pictured in Figure 1; its size can be described
by its length H, and its radii Rl(l) and R2(l) at the minimum
Input System z-coordinate and maximum Input System z-coordinate
ends respectively. The Input System z-axis of a Prototype
Sector must be chosen to coincide with the axis of the sector;
the Parers--position along this axis is specified by DZ (the
minimum Input System z-coordinate of any point on the Part). The
relative position of the Part with respect to the x and y Input

12
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Axes is specified by the lower and upper angles, T1I(l)
and TH(2) , which are measured from the positive xz-plane
(at 0O) in a positive direction about the z-axis towards
the positive yz-plane (at 90') . These, together with the
density (DEN) and the fact that it is a Floating Sector
(NTYP=I'l), completely describe the Dimensional and the
Input System data for this type of Basic Part.

In the special case RI() = R2(l) = R, the Prototype
Sector is a sector of a (right circular) cylinder rather
than of a cone and its (constant) xy-plane cross section
is a sector of a circle of radius R. If Rl(1) X R2(l),
this cross section varies with z, but it is always a sector
(of a circle) whose radius R(z) depends linearly on z (and
is given by Eq n. 2c). It should be remembered that
although a Prototype Sector is in general a piece of
a (right circular) cone which is symmetric about the z-
azis, the sector itself (unless T11(2) - TH(1l) = 3600) is
not symmetric about this axis.

The other four kinds of Basic Parts (indicated by
NTYPE = 0, 2, 3 or 4) are simply combinations of more than
one Prototype Sector. Each of the sectors of a Basic
Part may be assigned a different density, different angular
measure and different radii, but all of the sectors of a
single Basic Part are assumed to have the same minimum
z-coordinate (DZ) and length (H), and a common axis which
defines the Input System z-axis. One must always supply as
input the radii of each sector, and there are four ,ther
kinds of Basic Parts to account for the variation or non-
variation of the density and/or angular measure from
sector to sector (which are inputted only when necessary).
In contrast to the Floating Sector, here the lower angle
of the first sector is assumed to be 00, so that because
the sectors are assumed to be contiguous, the necessary
inputs (if the sector angular size is to vary) are simply
the upprr angles of the sectors, in order. Further
descriptIons of these four kinds of Basic Parts can be
found in the Input Guide, Section 1.3.

1.2.2 Standard Wedges

The term Standard Wedge will refer to a (possibly
truncated) right angle wedge (or trapezoidal prism) as
illustrated in Figures 3a and 3b. Its dimensions are its
length H, its width W and its heights RRI and RR2 at the
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lower-z and upper-z ends respectively. The relation of a
Standard Wedge to its Input System is defined by requiring
that its base be in the yz-plane and that the xz-plane
divide the wedge in haalf. The only freedom the user has in
choosing the Input System of a Standard Wedge is the choice
of DZ. This together with the density (DEN) and the fact
that it is a Standard Wedge completely describe the
Dimaensional and Input System data for this Part.

The actual appearance of the Standard Wedge is of
two forms according as either RRl = 0 or RR2 = 0, or as
both are non-zero. In the former case the Part should
correctly be called a "right angle wedge" or right tri-
angular prism (Figure 3b) whereas in the latter case it
should more properly be called a "truncated wedge" (or
trapezoidal prism) since in that case one vertex is
sliced off by a plane parallel to the xy-plane (and as a
result the Part has six faces instead of the five for a
"right angle wedge").

1.2.3 Angular Wedges

The term Angular Wedge will apply to a wedge (or
triangular prism) positioned as illustrated in Figure 4.
Its dimensions are its length H and its lower "radius"
RRI and upper "radius" RR2. The relation of an Angular
Wedge to its Input System is defined by its lower and upper
angles TH(l) and TH(2) and by DZ. These together with the
density (DEN) and fact that it is an Angular Wedge com-
pletely describe the Dimensional and Input System data
for this type of Part.

Angular Wedges have a constant xy-plane cross section
(it does not vary with z) which is a triangle with sides
of length RRI and RR2 and an included angle measuring
TH(2)-TH•I) (which of course must be less than 1900). This
is in contrast to a Prototype Sector which has only one

radius at each end but may vary in size from end to end.

It should be noted that Angular Wedges are actually a
combination of one or two Standard Wedges which have been
rotated and translated. They are included as a separate
type of Part to relieve the user of the task of constructing
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them himself. The program actually performs these rotations
and translations and computes the properties of the Angular
Wedge by properly conbining the properties (which it com-
putes) of the Standard Wedges of which the Angular Wedge
is composed. A more detailed description of this construction
of Angular Wedges can be found in scctions 2.4 and 3.5.

1.2.4 C~ncave Parts

The term "Concave Part" will be applied to a
body shaped like the one illustrated in Figure 5a. It
is similar to the Angular Wedge described in 1.2.3, differing
only in that the surface opposite its interior angle, of
magnitude (TI(2) - TH(l)), is not a plane but rather is a
part of the surface of a right circular cylinder whose axis
is a line parallel to the z-axis (but is outside the Part
itself), and is located so that the resulting Part is not
convex. That is, as in Figure 5b, O'and 0 do not lie on the
same side of line PiPi. Its dimensions are its length H and
its loi;er "radius" i1i) and upper "radius" RI(2).

Its relation to is Inpit System is defined by its
lower and upper angles TH(l) and T11(2) and by its minimum
z-coordinate DZ, just as in the case of the Angular
Wedge. The Concave Part has a constant xy-plane cross
.ection (Figur. 5b) which is a closed figure consisting
of two lines of lengths Rl(l) and R1(2) itiaking angles of
TH(l) and T11(2) respectively with the xz-plane and an arc
which is part of a circle with center at the point (XC, YC).

It should be noted that a Concave Part is a combin-
ation of two Angular Wedges minus a Prototype Sector,
rotated and translated tog-''her. The program constructs
and computes properties of Concave Parts by properly com-
bining results of calculations on Angular Wedges and Pro-
totype Sectors. This is illustrated in Figure 5b and is
further explained in 2.5 and 3.6. As in the case of
Angular Wedges, this type Part is included, even though
it is not independent of the previous types of Parts, as
a convenience to the user.

1.2.5 Known Parts

Whereas MOMENTS-II is capable of calculating
properties of the type Parts described in 1,2.1 - 1.2.4,
this ability is needed specifically to enable the program
to achieve its main purpose which is to combine them
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to obtain the properties of the entire composite object.
If a body is composed of (possibly irregularly shaped)
pieces whose properties are already known, in addition
to the pieces which can readily be approximated by
Parts, the program must also be able to fulfill its
main purpose of finding the properties of the entire
body. For this reason, in addition to the four "Unknown
Parts" previously discussed, MOMENTS-II will accept "Known
Parts". A Kncwn Part is simply an object whose shape
need not be considered but whose properties and location
must be described to the program. As for the other
Parts, each Known Part must be assigned an Input System;
in this case. however, the origin of the Input System
must be the center of gravity of the Known Part, although
its orientation (of its Input System) may be arbitrarily
chosen by the user, as before.

In addition to the "invariant properties", namely
the volume (V) and mass (AMASS), the user must supply the
"relative properties" Ixx, Iyy, Izz, I:z, Iyz, Ixy (see
1.1.1 - their FORTRAN names are XX, YY, ZZ, XZ, YZ, XY)
relative to the Input System.

The location of the Input System is specified by
giving the Reference System coordinates of the center
of gravity of the Part (CGX, CGY, CGZ - which are also
the coordinates of the origin of the Input System) so
that none of the usual Translation information is needed
or even permitted.

As before, Rotation information may be used to
describe the orientation of the Input System relative to
the Reference System for Known Parts also.

These restrictions, which in essence require that
the moments and products of inertia for a Kiiown Part
be known relative to any right-handed orthogonal coordinate
system with origin at the center of gravity of the Part,

4 should not increase the difficulty of using the program,
since iEt-is natural that these properties, if known,
will be relative to such a coordinate system.

A second function of this type of Part stems from
the following consideration: although once an object
has been "modelled" into Parts and punched onto cards
it can be inputted in that form in the future, it would
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be simpler if one could easily utilize the results of
the first calculation, rather than re-using all the
input cards and requiring the program to re-calculate
and re-combine the properties of these Parts each time
the identical object is to be used again. This can be
accomplished by tusing the Known Part feature, as follows:
if an object (represented by a group of Parts) is to be
combined with other objects in the future, the output
of the initial MOMENTS-Il rur can be punched onto (two
or three) cards as a single Known Part to be used as
inputs for the future runs (thus avoiding duplicate
calculations and saving time).

A third but related use of the Known Part feature
is that it allows one to find the properties with respect
to a new Reference Sysrcm of an object which has been
modelled and inputted to MOMENTS-I1 previeusly with respect
to an original Reference System,by merely adding the
proper Rotation information and the proper center of
gra-uity coordinates to the reczuits already obtained, and
by treating the object as a Known Part. This is in
contrast to keeping tne complete original. set of inputs
for the Parts making up the object and adding the proper
Rotation/Translation information to each Part's input.
This point was mentioned in the discussion of Rotation/
Translation information, sub-section 1.1.3.

I
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1.3 INPUT GUIDE

This section *s an Input Guide whosp purpose is
to exhibit the method of preparing the input cards
required by MOMENTS-II. Subsection 1.3.1 outlines
the procedure to follow in using the program to analyze
(find the properties of) an object, 1.3.2 lists the
actual input cards and input formats and 1.3.3 ex-
plains these input cards in more detail. The sample
cases in 1.5 complement this discussion and should be
examined before attempting to use MOMENTS-II.

1.3.1 Procedure (Input Preparation)

This is an outline of the steps to follow
in using MOMENTS-II to analyze a particular object.

1. While viewing an illustration or blue-
print of the entire object, choose a set of Reference
Axes, relative to the object, on the basis of convenience
or (more often) because it is desired to find the moments
and products of the body with respect to these axes.

2. Divide the body into sections, which
are merely portions of the object which can be conven-
iently modelled individually into Parts. A section
might be the region of space between two parallel
planes containing a portion of the object, such that the
cross section (in a plane parallel to these) is constant
In this region. This is merely a convenience and its
use will be evident in Sample Case 3.

3. Model each section by deciding how many
Parts will be used to approximate the section and exactly
what each of these Parts will consist of. (Note that
every point in the body must be in at least one Part
but may appear in more than one because of the use of
Parts with negative densities for deleting material.)

4. a) For each Part, decide whether to
classify it as a BDaýc Part, Standard Wedge, Angular
Wedge, Concave Part or Known Part, and choose an
(optional) identification or name for each Part.
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b) Choose a convenient set of Input
Axes for each Part accordinq to the restrictions in
1.2 by specifying the Input System information.

c) Find the Dimensional information
needed for each Part.

d) Prepare the RotaLion/Translation
Jinformation for each Part (this depends on the choice
of Input Axes relative to the Reierence A•xes) as ex-
pliined in 1.1.3.

5. Punch all the input cards in accordance
with the tabulation of input cards in 1.3.2 using the
data prepared as explained above.
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1.3.2 Input Cards fof MOMENTS-II

*1. Title Card

(TITLE(K), K=1,8) (8A10)

Any alphanumeric title may be placed in columns
1-80 and it will be printed at the top of every page of
output.

*2. Option Card

DEN1, NJI, NPRNT, NI, N2, N3, N4 (FlO.5,715)

DEN1 Default density
NJ1 Default number ci sectors/Basic Part

10 Output type = Summary (first andSlast pages only)

NPRNT = 1 Output type = Partial (omit Basic
Part radii)

2 Output type = Complete
N1 Number of Basic Parts
N2 NumJ-:r of (Standard and Angular) Wedges
N3 Number of Concave Parts
N4 Number of Known Parts

3. Basic Part Cards

** a) IDENT, H, DEN, DZ, NTYPE, NJ, TH(l), TH(2),
NR, NTR

(AlO,3FI0.4,215, 2FI0.3,215)

** b) (Rl(J),J=l,NJ) (8F10.4)
** c) (R2(J),J=1,NJ) (8F10.4)

d) (TH (J), J=l, NJ) (8F10.4)
e) (RH ),J=I,NJ) (8F10.4)
f) ((RM(I,J),I=l,3),J=l,3) (9F8.5)
g) XP,YP,ZP (3F10.4)

One set of a-c is required for each Basic Part. The
other inputs d,e,f and g are optional and are included
or not depending on NTYPE, NR, and NTR.

* These cards are required once for each case.
** These cards are required once for each Part.
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IDENT optional (10 character maximum) identifying
name for Part

H Length of Basic Part (measured parallel
to the Input System z-axis)

DEN Density of material in Basic Part
DZ Minimum z-coordinate of Basic Part (with

respvpct to Input Systemr)
0 Normal Basic Part with NJ equiangular

sectors
1 Floating Sector from lowec angle TH(l)

to upper angle TH(2)
NTYPE 2 Variable angles for sectors, density

constant. TH(.) inputs to follow.
3 Variable density for sectors, angle

size constant. PdI(.) inputs to follow.
4 Variable angles and densities. TH(.)

anid Ri4le) inputs to follow.
NJ Number of sectors in the Basic Part
TH(l), Lower and upper angles of Floating Sector,
T11(2) (degrees). Relevant for NTYPE=l only.
NR = o Input Axes are parallel to Reference ~xes.

1.1 Input Axes are not parallel to Reference
Axes. Rotation information to follo'.

NTR = 0o Origin of Input System coincides wit.\
{origin of Reference System.

1.1 Origin of Input', System does not coin,-ide.
Translktion information to f~Ioow.

Rl(J) Radii of sectors at lower-z end of Basic Part.
R2(J) Radii of sectors at upper-z end of Basic Part.
TH(J) Upper angles of sectors. Included if

NTYPE=2 or 4 only.
(Sectors are assumed coif.tiguous with lowest

angle equal to zero.)

RH(J) Densities of sectors. Included if NTYPE=3
or 4 only.

RM(I,J) Rotation information. Three unit vectors
in directions of the Input System x, y,
and z axes respectively, expressed in
Reference coordinates. Included if NR=l
only.

XP, YP, Coordinates of the origin of the Input System,
ZP expressed in Reference Coordinates. Included

if NTR=l only.
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4. Standard Wedge Card(s)

**a) IDENT, H, DEN, DZ, RR1, RR2, W, blank, NR, NTR
(AI0,5F10.4,2F8.3,212)

b) ( (RM(I, J), I=l, 3) ,J=l, 3) (9F8.5)

c) XPYPZP (3F10.4)

IDENT,H,DEN,DZ,NR,NTR,RM,XP,YP,ZP are as in 3.
RRI,RR2 Heights at lower and upper-z coordinate

(ends) of Wedge
W Width of Standard Wedge (measured parallel

to Input System y-axis)
Field of width 8 after W must be blank to indicate
Standard Wedge rather than Angular Wedge.

5. Angular Wedge Card(s)

**a) IDENT, H, DEN,DZ,RR1,RR2,TH(1),TH(2),NR,NTR

(AI0,5F10.4,2F8.3,212)b) ( (RM (I, J), I=l, 3), J=l, 3) (9F8.5)

c) XPYPZP (3F10.4)

IDENT,H,DEN,DZ,NR,NTR,RM,XP,YP,ZP are as in 3.
RR!,RR2 Lower and upper radii of Angular Wedge
TH(l),TH(2) Low-er and upper angles of Angular Wedge

TH(2) > 0.0 is required.

6. Concave Part Cards

**a) IDENT,H,DEN,DZ,Rl(l),Rl(2),TH(l),TH(2),NR,NTR

(AI0,5F10.4,2F8.3,212)
**b) XC,YC (2F10.4)

c) ((RM(I,J,I=l,3),J=l,3) (9F8.5)
d) XP,YP,ZP (3F10.4)

IDENT,H,DEN,DZTH(1),TH(2),NR,NTR,RM,XP,YP,ZP are
as in 5.
Rl(l),Rl(2) Lower and upper radii of Concave Part.
XCYC x and y Input System coordinates

of center o-exterior cylinder
used to define Concave Part.
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7. Known Part Cards

**a) VOL;AMASS,CGX,CGY,CGZ,IDENT,NR (5FI0.4,AlO,I5)
**b) xx,xy,yy,xz,yz,zz (6F10.4)

c) ((RM(I,J),I=l,3),J=l,3) (9F8.5)

IDENT and NR are as previously defined.
VOL Volume of Known Part
AMASS Mass of Known Part
CGX,CGY,CGZ Coordinates of CG of Known Part,

in Reference Coordinates
XX,YY,ZZ Moments of Inertia of Known Part with

respect to its Input System
XYXZYZ Products of Inertia of Known Part with

respect to its Input System
(The Input System of a Known Part must have its origin
at the CG of the Part.)

To delete a Known Part, use negative AMASS only;
to delete any other (Unknown) Part, use negative
DEN instead. The products, moments and volume for a
Known Part should not be reversed in sign if the Part is to
be deleted; MOMENTS-I! will do this automatically.

The TITLE and OPTION CARDS are followed by all the
BASIC PART CARDS, all the WEDGE CARDS, all The CONCAVE
PART CARDS, and all the KNOWN PART CARDS, in that order.
In all cases, The Rotation/Translation cards are placed
directly after The Input Cards for The Part they refer
to.

1.3.3 Discussion of Input Cards

1]. TITLE CARD

This card must be included as the first card
for each set of data relating to a single object or
body (i.e., for each case). The alphanumeric data
appearing on this card will be read and printed (exactly
as punched) on the top line of each page of output. If
no heading is desired, a blank card should be used.

2. OPTION CARD

This card must be included as the second
card for each case. The optional variables DENl and NJi
are default values for the density (DEN) for all Unknown
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Parts and for the numfber of sectors (NJ) in a Basic
Part respectively. If for any Part the value of either
DEN or NJ is read in as zero (or blank), the corresponding
default value read from the OPTION CARD will be used
in place of the zero. If DENI is also zero in such a
case, the value used for the density will be zero, in
which case an incorrect volume (non-zero) will P~robably
be calculated.

The variable NPRNT is used to specify the amount
of information to be printed. Setting NPRNT=0 will
suppress all output except for the first page (suminary
of the options) and the last page (properties of the
entire body). Setting NPRNT=2 will allow the complete
output to be printed. NPRNT=l will have the same effect
as the latter case except that a slightly shortened
form of output will be used for Basic Parts, which does
not include a listing of any input arrays of variable
radii, angles and densities for the sectors. This
option will be explained further in 1.4.

The input variables Nl, N2, N3 and N4 tell the
program how many of each type Part will be included in
the current case.

3. BASIC PART CARDS

one set of cards in set 3 is required for
* each Basic Part to be used. Each Part may be assigned

an (optional) identifying name consisting of any 10 (or
less) characters. This IDENT is simply for the convenience

* of the user and since it is included in the output it
allows one to find a particular Part by name. The vari-
ables DZ and H are standard inputs which correspond
to quantities in Figure 1. In all cases the sectors in
a single Basic Part are assumed to have a common length
H, and NJ specifies the number of sectors in the Basic
Part. (The current limit of 72 can easily be changed.)

The input variable NTYPE informs the program
which of the five kinds of Basic Parts the current one
is, i.e., whether or not the angles and/or densities
will vary from sector to sector in the Part. The five
cases are considered individually as follows:
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If NTYPE=0, the program assumes that the Basic
Part consists of NJ sectors each with an anguler
measure of 360/NJ degrees and density DEN, and that they
are situated such that the first section has lower and
upper angles of 00 and 360 0 /NJ respectively, and con-
tinuing in a contiguous fashion, the last sector having
lower and upper angles of (36 0 0 - 360 0 /NJ) and 3600
respectively. Except for their varying angular positions,
these sectors may differ in size, only because of
varying "left" and "right" end radii variation. These
radii are read in as Rl(J) and R2(J), for J=l,...,NJ, on
cards 3b and 3c as is the case for all Basic Parts. For
this kind of Basic Part, cards 3d and 3e should be
omitted.

If NTYPE=l, the Basic Part is assumed to be a
Floating Sector for which the inputs TH(l) and TH(2)
specify the angular position (and angular measure) as in
Figure 1. (These variables are ignored for other values
of NTYPE.) For this kind of Basic Part NJ must be 1
and Cards 3d and 3e must be omitted.

If NTYPE=2, the program assumes that the angular
measure of the NJ sectors is allowed to vary, so that
the (upper) angles must be inputted using card type 3d.
Here, the lowest angle of the first sector is assumed
to be zero and the NJ angles which are inputted are
considered to be the upper angles of each sector. Since
the sectors are assumed to be contiguous the lower angle
of the J+lst sector is defined to be the upper angle of
the Jth sector, so that these upper angles define the
angular boundaries completely and uniquely. For example,
NJ=4 and TH(l),...,TH(4) equal to 240, 720, 1680, 3600
would be interpreted as describing four sectors whose
angular ranges are 00 to 240, 240 to 720, 720 to 1680
and 1680 to 3600; they are sectors of angular measure
240, 480, 960, and 1920 respectively. To input EtheTast
three of these sectors only, that is, to input three

J sectors of varying angular measure with first sector not
having lower angle zero, one could follow the above
procedure, but also input Rl(l)=0 and R2(1)=0 by punching
0.0 in the first fields of cards 3c and 3d respectively.
(For any value of NTYPE, this method of setting radii
equal to zero rather than setting densities equal to
zero should be used if one needs to skip certain sectors.)
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If NTYPE=3, the program assumes that the density
will be allowed to vary from sector to sector and that
these densities will be inputted on card set 3e, one
density for each sector. Card set 3d should be omitted,
because the sectors will be assumed equiangular as if
NTYPE=O.

If NTYPE=4, it will be assumed that both the
angles and the densities will vary by sector, and there-
fore, card sets 3d and 3e must be included to supply
this information. The angles are then handled exactly
as if NTYPE=2 and the density will be handled as if
NTYPE=3.

In general, the density is handled as follows:
For NTYPE=O,l or 2 the constant density DEN from the
preceding rard 3a is used for all sectors. For NTYPE=3
or 4 the density of the indiviauiil sectors are specified
in the input array RH(J) on the card set 3e. In these
cases the value of DEN (card 3a) will be used as a
default value for the sectors in the same Basic Part,
and if DEN is zero the value of DEN1 will be used in
its place even if that also is zero.

As for the other thrce (Unknown) Parts, the indi-
cators NR and NTR inform the program if any Rotation or
Translation data (respectively) is included. This in-
formation always appears as the last card(s) for the Part
to which it applies; for Basic Parts they are card 3f
and 3g. Card 3f, as for all other Rotation cards, con-
tains nine entries. The first three are the Reference
System Components of the Input System x-axis direction,
the next three are the Reference System Components of
the Input System y-axis direction and the last three
are the Reference System Corcrcnents of the Input System
z-axis direction. (The matrix of these nine elements
must be orthonormal.) Card 3g, as for all other Trans-
lation cards, contains simply the Reference System
Coordinates of the origin of the Input System.

To summarize the Basic Part cards, card sets 3a,
3b and 3c are required for each Basic Part, card sets
3d and 3e depend on NTYPE for inc'lusion or exclusion,
and cards 3f and 3g depend on NR and NTR. The formats
of the data are indicated in parentheses next to each
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card set. Card sets a, f and g consist of one card
each and card sets b, c, d and e contain as many cards
as are necessary to specify one qua:,-ity for each of
the NJ sectors; since these quantities are punched 8
per card, the number of cards in any of these sets for
a given Basic Part is the greatest integer in (NJ+7)/8,
where NJ represents the number of sectors in that Part.

4. STANDARD WEEDGE CARDS

The entries on card type 4a are analogous to
the previously explained variables except that RRl
and RR2 are the two heights of the Wedge at the lower-z and
uvner-z ends resDectively and W is the width of the
Wedge. The eighth field on data card 4a should be
blank in order to inform the program that the wedge is
a Standard Wedge rather than an Angular Wedge. Cards
4b and 4c contain the Rotation and Translation infor-
mation, their inclusion depends on NR and NTR as before.

5. ANGULAR WEDGE CARDS

These cards are identical to those in 4., ex-
cept that W does not apply but instead the angles TH(l)
and TH(2) (see Figure 4)Ware required. Mere, TH(2)
must be greater than zero in order to differentiate
Angular Wedge cards from Standard Wedge cards. (Thus,
to input an Angular Wedge with upper line in the xz-
plane, one would set TH(2) equal to 3600 rather than
equal to zero.) As should be obvious, the angular
measure of a sector, given by TH(2)-TH(l) or by TH(2)-
TH(1)+360 0 if the first result is negative (for example
if TH(1)=300 0 , TH(2)=300 ), must be less than 180*, since
it is actually an angle of a triangle. It is not
required that Standard Wedge cards precede AnguI-Ir Wedge
cards, as these are treated similarly (for input
purposes) by MOMENTS-II.

6. CONCAVE PART CARDS

The first card (6a) contains the usual Dimen-
sional and Input System data as well as the IDENT and
Rotation/Translation indicators NR and NTR. The inputs
Rl(l) and R1(2) are the lower and upper radii making angles
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of THMl and TH(2 degrees respectively with the xz-
plane. Card 6b contains the Input System Coordinates
XC, YC of the center of the (exterior) cylinder necessary

* to define the Concave Part. It should be remembered
that the axis of this cylinder must be parallel to the

* Input System z-axis of the Part. The radius of the
cylinder is not needed as input, s~ince MOMENTS-Il
computes this quantity.

7. KNOWN PART CARDS

These cards must supply the properties of the
Known Part relative to its Input System, whose position
relative to the Reference Fystem is specified by the
inputs CGX, CGY, CGZ and by the Rotation information as
explained in 1.1.3. As mentioned previously, the variables
CGX, CGY and CGZ are the Reference Coordinates of the
center of gravity of the Part which is also the origin
of its Input System.

The order of the input cards follows the order they
are listed in 1.3.2. For each set (3, 4, 5... ) of cards
describing a single Part, cards (a, b, c...) in the
set appear in the order listed above, with the Rotation/
Translation cards (if necessary) always appearing at the
end of the data for a particular Part. The order of card
sets describing like types of Parts is arbitrary, e.g.,
if one has two ca-T-sets describing Basic Parts, it makes
no difference which of these two sets appears first.
The order of card sets describing different types of
Parts must, however, be as in the Th I2 ),with
the only exception being that all Wedge cards, both

* Standard and Angular, may be treated as a single type of
Part, the~ Wedge, for which the preceding statement applies.
The structure of an input djck (for a single object) is
as follows: One Title Card and one Option Card must
appear as the first and second cards respectively. Follow-
ing these, one inserts all Basic Part Cards followed
by all Wedge Cards followed by all Concave Part Cards,
and finally followed by all Known Part Cards. If more
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than one object is to be analyzed in a single run
of MOMENTS--II, each input deck is constructed as
above and the decks are placed sequentially by case
(no separators of any kind are necessary), each one
beginning with the required Title and Option Cards.
Cards labelled (*) in 1.3.2 are required once for
each case, and cards labelled (**) are required
once for each Part of the type to which they apply.

In all cases angles are measured in a (positive)
rotation about the z-axis, with a line in the positive
xz-plane measured at 00 and a line in the positive
yz-plane at 90° etc. One should always use positive
angles between 0Q and 3600 to express angles. If a
floating Sector, Angular Wedge or Concave Part cuts
across its Input System xz-plane, it is permissible
to define the angles TH(U) and TH(2) such that
TH(1) > TH(2), e.g., TH(1) = 330* and TH(2) = 200.
(Although other possibilities such as TH(U) = -30* and

TH(2) = 200 may also execute successfully for such a
case, it is not advisable to input angles in this
fashion.)

Finally, as is generally the case, if any
optional variable is omitted, its field as specified
by the appropriate format appearing in 1.3.2 must
be left blank; no compaction of data on a card
should be attempted. For optional cards, however,
the whole card should be omitted (and not replaced
by a blank card) if the data on the ca•F--is not
required.

2
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1.4 OUTPUT GUIDE

The purpose of this section is to explain all the
information printed as output from MOMENTS-II. The
four types of data provided as outputs are the options,
the inputs for all types of Parts, the computed properties
of all types of Parts, and the computed properties of
the entire body.

1.4.1 MOMENTS-TI Option Page

The first page of output from MOMENTS-II will be
referred to as the Option Page. The title, exactly as
appearing on the Title Card, is printed at the top of
this page as on all other pages. The Option Page is al-
ways included in the output and it lists precisely the
information contained on the Option Card. The values
of the input quantity NPRNT are indicated on this page
by specifying the output type as SUMMARY, PARTIAL, or
COMPLETE. COMPLETE indicates that all outputs are printed,
and SUMMARY indicates that only the Option Page and the
last page (PROPERTIES OF THE ENTIRE BODY) are printed.
It will be pointed out in 1.4.2 which print-outs are
omitted or modified if the PARTIAL type is chosen;
this option only affects output for Basic Parts.

1.4.2 Listing of Inputs

For input/output purposes, both Standard Wedges
and Angular Wedges are considered simply as Wedges. Their
inp-..t1 .utput formats are almost identical and are combined.
Therifore, the output for Unknown Parts is divided into
threa sections, for Basic Parts, Wedges and Concave
Parts. Furthermore, each of these sections consists uf
a listing of inpat data (not card images) and a listing
of output data. The following summarizes these as has
been done in 1.3.2 for Input cards.

1. Basic Parts - On the section entitled "INPUT
DATA - BASIC PARTS", tnere is at least one main line of
output for each Basic Part, which gives the Part a number
and lists all data which was inputted on Card 3a. For
Floating Sectors (NTYPE=I), the lower and upper angles
(TH(l) and TH(2)) are listed; if they do not apply
(NTYPE=l) their fields each contain a single asterisk (*)
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only. For NPRWT=2 (COMPLETE output), the next group
of lines will contain the lowir-z and upper-z end
radii Rl(J), J=l..., NJ and R2(J),J=l,...,NJ. The
remaining lines will be those which apply for the parti-
cular value of NTYPE being considered. In all cases,
the output for each Basic Part will follow (in oraer) the
input cards 3a-3g which apply. Thus, if Rotation and
Translation data were inputted, these will be outputted
on the last two lines for the Basic Part. For the
PARTIAL output, which is useful for Basic Parts which
consist of complete frusta of cones rather than single
sectors (i.e., they are symmetric about some axis)
so that the first lower-z and upper-z radii (at either
end of the first sector in the Basic Part) are the only
radii, these radii are listed on the main line in addition
to the standard quantities inputted on card 3a. The
lines corresponding to data inputted on cards 3b-3e are
not printed out, but those corresponding to Rotation/
Translation information are printed whenever applicable
unless NPRNT=0.

2. Wedges - The section entitled "INPUT DATA -

WEDGES", contains the inputs for both Standard Wedges
and Angular Wedges. The data printed out is merely
the information from input cards 4a, b, c and 5a, b, c
in the order the data was inputted to MOMENTS-II. As
usual, one main line of data is printed for each Part,
containing the information on cards 4a or 5a, and the
Rotation/Translation information is printed directly
following the line to which it applies. The program
will also print "STD" or "ANG" in the column labelled
"WTYPE" to distinguish between Standard and Angular
Wedges respectively. This will also be indicated by
the presence of the asterisk (*) in the WIDTH coliamn
(for Angular Wedges) or in the TH(l) and TH(2) columns
(for Standard Wedges).

3. Concave Parts - The next section lists the
inputs for Concave Parts which correspond to the
data inputted on card sets 5a, 5b and also on 5c and/or
5d when applicable. The coordinates XC, YC on card
type 5b are printed last on this main line and are
called "X-CENT!R" and "Y-CENTER".
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4. Known Parts - Each Known Part has a main
line printout conztahin-ng all the information from card
set 6a, b. As before, data from card set 6c is
printed on the next line if it applies.

In all cases, the presence or absence of the
Rotation/Translation lines at the end reveals the values
of NR and NTR, and no other listing of these indicators
is printed.

1.4.3 Listing of (Computed) Properties of Parts

This group of outputs contains sections for
each of the four types of Parts (Basic, Wedges, Concave,
Known) considered as outputs. The outputs for Basic
Parts, Wedges, and Concave Parts all consist of single
lines containing the number of the Part (corresponding
to that used for each Part in 1.4.2, numbers beginning
at 1 for each of the four types of Parts), the IDENT,
and the computed volume, mass and center of gravity in
Reference Coo-dinates. The "PROPERTIES OF KNOWN PARTS"
section lists the number and IDENT of each Part as well
as the moments and products of inertia with respect to the
Reference Axes. This is in accordance with the practice
of listing quantities which were computed by MOMENTS-II
in this section. (It is this feature that enables one
to input either a number of Known Parts with respect
to a different Reference System or a single Part with
respect to different Reference Systems, to find the
moments and products of either all the objects with
respect to a new Reference System or of a single Known
Part with resp--•t to an arbitrary set of Reference
Systems as described by Rotation cards and the variations
of CGX, CGY, and CGZ.)

1.4.4 Properties of the Entire Body

The last page of output contains information
on computed properties of the entire object. The "MASS"
is merely the algebraic sum of the masses of the Parts
making up the object. The "POSITIVE VOLUME" is the sum
of the volumes of all Parts with positive masses or
densities and the "NEGATIVE VOLUME" is just the sum of
the volunes of the Parts which have been deleted (by the
user). The algebraic sum of these two quantities is
referred to as "NET VOLUME", and it will correspond to
the true volume only jP the inputting and modelling have
been done according to certain rules (see note in Sample
Case 1).
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The "COMPONENTS OF THE INTERIA TENSOR WITH RESPECT
TO REFERENCE AXES" are just the algebraic sum of the
moments and products of all Parts with respect to the CG-
Axes (parallel to the Reference Axes but with origin
at CG of the object). These are the most useful values
for inputting to future MOMENTS-II runs. Finally, the
"PRINCIPAL MOMENTS" and "PRINCIPAL AXES" are the eigen-
values and eigenvectors of the inertia tensor matrix
with respect to the CG-Axes, and they are the final output
on the "PROPERTIES OF THE ENTIRE BODY" page.
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1.5 SAMPLE CASES

This section contairs four sample cases to il'-
lustrate the use of MOMENTL3-1I in finding properties of
certain solids. Each sample case serves a specific
purpose which is mentioned below. The cases treated
here by no means exhaust the possible applications of
the program.

1.5.1 Sample Case 1

The followi~ng sample case consists of a hypo-
thetical and greatly oversimplified shell. It is the
same as that treated in Ref 3 (describing the original
MOMENTS program) and it is included here to il~lustrate
the simplicity of using the TPANSL information (rather
than the approximations used previously) to input a Part
whose Input System is parallel to the Reference System
but has its origin at a different point.

The sample body is illustrated in Figure 6 and it
has already been divided into sections as aescribed in
1.3.1. Much of the following description of the object
has been taken from Reference 3. Such a case might
be considered to investigate the effect on its properties
of shifting a piece of a previously symmetric object, so
as to make it asymmetric.

Section I and 2 are already special cases of frusta
of symmetric cones, so that each is treated as a Basic
Part. The third section labelled "Known" is identical
to the second, but will be inputted as a Known Part to
illustrate the use of Known Part cards. For this Part
the moments and products will be inputted rather than
requiring the program to calculate them. The axes of
these three Parts all coincide with t~he Reference z-axis,
so their Input Systems are all chosen parallel to the
Reference System and since DZ will be used to account
for any z-displacement the two systems are identical and
no Rotation or Translation is necessary for them.

The fourth section conctains a cylindrical core of
material which is denser (density =0.5) than the rest
of the section (density = 0.3). To input this section
three Parts are used: first the basic section, a cylinder
with density .3 as a Basic Part is inserted, next the
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material occupying the space where the core is to be
placed is considered as a Basic Part to be deleted (using
density = -0.3, to indicate a deletion of material of
density 0.3), and finally the core (density = 0.5) is
inserted as another Basic Part. These last two Parts are
identical in shape but differ only in sign and magnitude
of density.

If one represents this section as two Parts instead
of three by simply adding the difference (0.2=0.5-0.3)
between the core density and the basic density as Part 4
(not requiring Part 5), correct results would be obtained
for all quantities except for volumes. The "POSITIVE
VOLUME" would be the same, but the "NEGATIVE VOLUME" would
be less negative, thus resulting in a "NET VOLUME" which is
greater than the true volume. To insure that the "NET
VOLUME" actually represents the true volume, one always must
model an object as if one were constructing it Part by
Part. That is, one must not insert a Part into a region of
space already occupied by another Part without deleting the
Part already occupying that space (by assigning a negative
density of equal magnitude to another Part otherwise
identical with the first).

The fifth section or tail section is inputted as
two basic Parts. The first is a frustum of a cone (density
=0.2) which actually includes more than the tail section.
To delete the cone-shaped extra piece on the end, another
Part is created and assigned a negative density of -0.2.

Thus a total o' seven Basic Parts (all NTYPE=0) and
one Known Part are used to describe this simplified shell.
It should be noted tl'&t in contrast to the method used in
Reference 3, the core, which is symmetric about an axis
parallel to and 0.5 units above the z-Reference Axis, is
represented exactly here and is not approximated. This
is made possible by choosing an Input System for the two
Parts (deletion and insertion) describing the core, with
origin at the point (0.5, 0.0, 0.0), iidicated by including
for each a TRANSL card with XP=0.5, YP=0.0, and ZP=0.0
and a value of 1 for NTR. A comparison to the method of
Reference 3 will show the amount of work saved by this
procedure, but the details will be omitted here.
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Input cards for this run are shown in Appendix A
which also contains the output from this sample case. The
density DEN is not entered on the first input card for
each of the first two Basic Parts, so the default value
DENl=.2750 will be used, and the number of sectors NJ is
not entered on any cards so the default number NJl=l is

* used always. The 1 in column 20 of the Option Card directs
the program to list only the first radius at each end of
each Basic Part. In this case, the Basic Parts all have
oiue complete sector so these two radii Rl(l) and P.2(l)
are the only ones.

The properties of the Known Part entered on the last
two input cards were obtained by inputting that Part by
itself, identical to Part 2, but with arbitrary DZ. Be-
cause in that run the Part in question constituted the
entire object, the overall center of gravity was also the
Part CG and so the "COMPONENTS OF INERTIA TENSOR WITH RESPECT
TO C.G." printouts on that output are the input quantities
needed for the present run.

The effect of the upward shift in the core in this
same case can be seen from the output, the overall center
of gravity is in the xz-plane at x0.113 instead of on
the z-axis; the third principal axis ha% *a positive x-
component so it is tilted slightly upwards (by about 1/30
degree); and Ixz does not equal zero as it would if the core
were symmetric about the z-axis.

1.5.2 Sample Case 2

The object to be analyzed in this sample case is
shown in Figure 7 and the axes shown are those with respect
to which the mnoments and products of inertia are required,
that is, they are the Reference Axes. It is convenient to
divide the object into three sections, the left one
consisting of the half cylinder, the right one the rectangular
parallelepiped, and the middle section the semi-wedge
shaped object.

The left section is a Basic Part because it is a
1800 sector of a right circular cylinder. Its Input System
z-axis must lie along the axis of the cylinder (parallel
to the Reference y-axis) and if the Input x and y-axes are
chosen parallel to the Reference System z and x-axes
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respectively, then the Input System will be a right-handed
orthogonal coordinate system. The origin must be chosen
so that the previously chosen Input z-axis lies on the
axis of the cylinder, so its x and z-coordinates XP and
ZP must be 1.0 and 0.0. The y-coordinate YP is arbitrary
but will be chosen at 0.0 for simplicity. Then, when
considered z t Dazic Pirt (NTYPE=l) described with respect
to the Input System above, the Part labelled FART 1-ur?
has length 3.0, density equal to the default value, and
displacement zero, because YP=0. Because the angles are
measured from the x to y Input Axes, TH(1)=270° and
TH(2)=90°, and the radius at each end is 1.0. NR and NTR
aie chosen as 1 to indicate that Rotation and Translation
information will follow, consisting of the directions of the
x, y and z Input System Axes (0,0,1), (1,0,0) and (0,1,0)
respectively (in Reference Coordinates) and the Reference
Coordinates (1.0, 0.0, 0.0) of the origin of the Input
System.

The mniddle se..ticn can be more easily analyzed by
considering the xz-cross section in which the dotted line
(actually a plane) has been drawn dividing the section
into a Concave Part and an Angular Wedge, which have been
labelled Part 2 and Part 3 in the figure.

For Part 2, the Input System Axes are chosen
parallel to those of Part 1, but with origin at (0.0,
0.0, 4.0), again in the xz-plane. The length is 3.0, the
density is the default value, and the displacement
DZ is zero. The angles must be measured from the Input
x-axis (parallel to DE) about point D counterclockwise
to the lower radius (line DA) and to the upper radius
(line DB). The lengths of these lower and upper radii

DA and DB are approximately 3.4164 and 3.1509 and the angles
EDA and EDB are approximately 155.1470 and 169.6870
respectively. The exterior center for the Concave Part is
at the point F, which has Input System coordinates XC=-4.0
and YC=l.0, the Rotation information is as before, and
the Translation information reflects the Reference Coordinates
of the origin of the Input System of Part 2.

3
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The other region in the middle section, labelled
Part 3, is an Angular Wedge. There are many ways to chose
the Input System but it is convenient to choose the same
system as for Part 2. Then the length is 3.0, DZ=0.0
the radii DC and DA have lengths 2.0 and 3.4164, and the
angles EDC and EDA are 90.00 and 155.1470 respectively.
The Rotation/Translation information is the same as for
Part 3 because the Input System is identical.

It should be realized that this middle section could
be modelled as a single Standard Wedge (with xz-cross
section ABCD) which would introduce a slight inaccuracy
because segment AB is actually an arc of a circle rather than
a straight line. This is a simple example of the decisions
on accuracy versus input preparation time which have to
be made in using MOMENTS-II. Here, the exact representa-
tion, seen by drawing line AD is preferred because it is
also quite simple. The use of auxiliary lines in modelling
odd-looking shapes into combinations of Angular Wedges
and other Parts is an "art" which can play an important
role in the use of MOMENTS-Il.

Finally, the rightmost section is exactly a Standard
Wedge. The requirement that the xz-Input plane divide it
in half forces the choice of YP=I.5, and ZP has been chosen
equal to 4.0 to allow DZ=0.0. (In fact, any combination of
ZP and DZ such that ZP+DZ=4.0 would be valid here.) The
Input Axes are parallel to the Reference Axes so that the
length H (always measured parallel to the Input z-axis) is
5.0, the heights at both ends are 2.0 and the width W
(measured parallel to the Input y-axis) is 3.0.

This completes the description of the modelling
of the piece. The Input cards for this case are shown in
Appendix B and the output follows.

Since it was convenient to rotate the axes for 3
out of the 4 Parts, it would have been equally simple to
redefine the Reference Axes to be respectively parallel
to the axes of this common Input System and to obtain the
properties with respect to the new Reference Axes. Since
in this case the rotations are all merely axis interchanges,
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the desired results could have been easily read from the
output. This was not done in order to better illustrate
the use ot Rotation-information. It should be noted that
this simple situation in which the Rotation information
describes merely interchanges of axes is not the most general
case. To obtain properties with respect to a set of axes
not parallel to the first, the results with respect to the
CG-Axes could be used in treating it as a single Known Part
to find the properties in a second run, or one could change
all the Rotation information instead, which (as mentioned
in 1.1.3) is the less desirable method.

1.5.3 Sample Case 3

The purpose of this sample case is to outline
the method for analyzing an nhjoct, working from its blue-
prints. It utilizes the technique of dividing the object
into sections, which can more precisely be called "Levels"
(i.e., regions between parallel planes which are perpen-
dicular to the axis of the object), in order to reduce the
dimensionality of the problem. The method consists of
choosing these levels so that the xy-cross-section is con-
stant within any one Level, so that using one blueprint
for each one can effectively reduce the problem to a num-
ber of two-dimensional ones in which only one Level is
analyzed at a time. Thus, one models each Level individually
and combines the separate inputs from them to describe
the complete object to the MOMENTS-II program.

The present sample case illustrates the above
technique by considering a single Level of a multi-Level
object. Figures 8a and 8b are the two views (A and B) of
the object and Figures 9a and 9b are its two section views
(A-A and B-B); all four views are taken from the actual
blueprint of the object. On the front view (A) the proper
border for the Level under consideration is outlined
darkly, and dotted lines have been added to model the
Level into Parts. Since these are cross-sectional views,
the resulting Parts will generally be Basic Parts (Floating
Sectors) with equal rWdii at the ends (sectors of a circle,
in two dimension.), Angular Wedges (triangles, in two
dimensions) and Concave Parts. In the present case the
dotted lines divide the Level into 11. Parts, not including
the holes which are treated last as simply cylinders (Basic
Parts, NTYPE=O) with negative densities. Letters for labelling
points as well as numbers for identifying Parts have been
added to view A to facilitate the descriptions.
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The Level under consideration here is the middle one
of three in the actual object. Therefore the IDENTS for
the Parts in it will be of the form "NO. N..L2," where N is
the Part number (here 1<N<11) and L2 stands for Level
2, since in this case only the middle or second Level is
considered.

The x and y-axes shown in view A are the Reference
Axes and the z-axis points outward from the blueprint. Be-
cause the problem has been reduced to a two-dimensional one,
these x and y coordinates alone will be used to describe
points on the cross section; they should be assumed to be
with respect to the system with origin at 0 unless otherwise
specified.

The first Level, whos3 length is .094, was assumed
to be positioned with its lower-z face on the xy-plane
(at z=0) of the Reference System. The Input Systems for
every Part in this case are chosen with their origins in
the Reference xy-plane, so that the Translation information
(where necessary) is always of the form (XP, YP, 0) and the
z-displacement DZ for every Part in this second Level is
set to .094. Also, the "length" of the second level is
.095 which therefore serves as the value of H for every
Part.

A description of the process as applied to this sample
Level will now be presented; each of the Parts into which
it has been modelled will be considered individually in
numericPl order corresponding to the numbers on view A.
Although most of the information needed to compute the
necessary angles and radii comes from view A, some has been
taken from view B.

The first Part, AOB, is a Concave Part which will
be identified as "No. 1.. .L2". Rl(l) and R1(2) represent
the lengths of OA and OB which can be found on the blue-
prints as .325 and .475 respectively. The angles are given
by TH(1) = 355.0* and Th(2) = 19.8000, the latter being
found by intersecting the two circles which are centered
at S with radius 0.24 and at 0 with radius 0.475. The
exterior center is at the point S whose coordinates are
XC = .56285 and YC = -. 049243 (i.e., .565 cos 3550 and .565
sin 355*).
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The second part, BOC, called "NO. 2...L2" is a
Basic Part (NTYPE=l) with TH(l)=19.800 0 and TH(2) =
137.8600. The latter can be seen by observing that point
P lies on the line through F mdking an 800 angle with the
negative x-axis and also on the circle with center at U

* .and radius .362. The coordinates of F can be read from
view A as (-.18,0.0) and those of U can be read from view
B as (-.202, -. 168), so -that the coordinates of P are
(-.214171, .193793) which yields TH(2). The radii are
given by RI(l) = R2(l) = 0.475 as can be seen from view
B. It should be noted that C is simply the point where
line OP meets the large arc and the dotted line was drawn
here .ause it delineates the largest Part 2 can be if one
requires point P to fall outside of this Part.

The third Part, CPD, will be approximated by a
Basic Part (NTYPE=l) with radii RI(l) = R2(l) = .19246 and
angles 137.66* and 164.4140. It is described with respect
to its Input System with origin at P (not at 0) so that NTR=l
and (XP, YP, ZP) = (-.214171, .193793, 0.0); ZP is zero
because the origin of the Input System lies in the Reference
System xy-plane and DZ takes care of the z-displacement.
This is an approximation only, because CD is actually an
arc of the larger circle (radius = .475) centered at 0
rather than of a circle centered at P. (Note that no
approximations whatsoever were involved in the previous
two sample cases, because all sections there could be
represented exactly as combinations of Parts, whereas here
this is not the case'.) Calculating the coordinates of
D, the intersection of line DE and the large circle centered
at 0, one obtains (-.405610, .247195). (The line DE isconsidered as shown in view B as parallel to the line y=

(tan 114 0 )x and .27 units from it.) The angle, measured
about P as center, of CP is the same as its angle about
0 because CPO is a single straight line. The upper angle
(about P) of the line DP can now also be found knowing the
coordinates of both D and P, and this is also as given
above. Computing the lengths of both CP and DP, they
are (expectedly) unequal, but their values .18617 and .19875
are close enough so that the approximation of CPD as a
Basic Part (sector of a cylinder) centered at P will be
accurate enough if one uses as its radius .19246, which is
the average of the two.
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Since arc CD is actually on a c:rcle centered at
0, one could alternately allow Part 2 to extend to D
(rather than to C), having line OD (not drawn) as its
upper boundary. This would remove the necessity of the
Part 3 approximation to CPD described above but would
require (the deletion of) Angular Wedge DPO as Part 3.
Thus, it would be more accurate, require the same number
of Parts, and not affect any of the other Parts, so that
it is superior to the method used above. This illustrates
the type of modelling decisions which must be made in
using MOMENTS-IT. The degree of accuracy required and
the time available are the basic criteria for making these
decisions. In the present case, a comparison run using the
exact representation shows that the loss in accuracy
due to the model actually used is small.

Part number 4 (EPP) will be approximated by a
Concave Part about D as center with radii Rl(l)=DE=.I0052
and RI(2)=DP = .19878 and angles TH(l) = 294.00 and
TH(2) = 344.4140. Because the origin of its Input
System is at D, the Iranslation information (XP, YP, ZP) =
(-.40561, .247195, 0.0) must be included for this Part.
The exterior center is at the point U given by (-.202,
-. 168) with respect to the Reference System, so that the
.nputs (XC, YC) with respect to the Input System ccr.
at D are given by (.203610, -. 415195). The uppet, adius
DP has already been calculated and the upper angie of this
Part can be calculated from the upper angle of Part 3.

EDP was considered a Concave Part because EP is
a circular arc; that is only an approximation because
DE is not a perfectly straight line but has rounded ends.

Since the arc is relatively short (in angular measure) it
is nearly a straight line and EDP could have been modelled
as an Angular Wedge. This approximation is in fact a
good one (as a comparison run would show) and could have
been used with only a negligible loss in accuracy.

Part 5 (POF) is an Angular Wedge centered at 0. Its
radii and angles are easily seen to be RRI = OP = .288834,
RR2 = OF = .16, TH(l) = 137.860 and TH(2) = 180.0.
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Part 6 (FOG) is also an Angular Wedge centered
at 0. Its radii are RRI = OF = .18 and RR2 = OG = .352463
and its angles are given by TH(1) = 180.00 and TH(2) =
231.6210. The lower quantities are obvious and the upper
ones can be verified by computing the coordinates of
the point G, the intersection of line FG and the circle
about Q with radius .195. Since the coordinates of Q
are (-.031314, -. 222810), which are obtained from its
polar coordinates (r,O) = (.225, 2620), the resulting
coordinates of G are (-.218832, -. 276302), from which the
upper quantities given above are found.

Part 7 (GOQ) is another Angular Wedge centered at
0. Its radii are RRl = OG = .352463 and RR2 = OQ = .225
and the corresponding angles are TH(l) = 231.621° and
TH(2) = 262.00. All of these Quantities have either already
been computed or can be read from view A.

Part 8 (GQH) is a Basic Part (NTYPE=l), described
about Q as center, whose coordinates are known. Since the
coordinates of G are also known, the lower angle TH(l)
of this Part is easily calculate-d. To calculate the upper
angle TH(2), one applies the law of cosines to isosceles
triangle GQH (not drawn) to obtain angle GQH = 141.3270.
Thus TH(l) = 195.9220, TH(2) = 337.2490, and Rl(l)
R2(l) = .195.

Part 9 (HQI) is an Angular Wedge described about
Q. Its lower quantities are RRI = .195 and TII(l) = 337.2490
and one requires the coordinates of I to find the upper
radius QI. The coordinates of H in the Input System with
origin at Q are (.179828, -. 07541T,-i-nd assuming I t-o -e
at the i-ntersection of the lines HI (parallel to FG and
.368 units to the right of T) and QJ, the coordinates of
I with respect to the Q-centered system are (.194714,
.030505). Thus the length of QI RR2 = .197089 and the
upper angle TH(2) = 8.904*.

It should be noted that NTR = 1 for Parts 8 and 9
and the Translation information (XP, YP, ZP) = (-.031314,
-. 222810, 0.0) must be supplied for both of these describing
the location of the point Q, which is the center of the
Input Systems for both of these Parts.
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Part 10 (QOI) is an Angular Wedge described about
0. Its lower radius and angle are RRl = OQ = .225 and
TH(1) = 262.00. Its upper angle is found by noting that
J lies on a circle with center 0 and radius .325 and has
y-coordinate -. 175. Thus the coordinates of J are (.273861,

.175), the upper angle TH(2) = 327.4210 and the correspond-
ing RR2 = OJ = .325. Part 10 is not included as a piece of
Part 7 because GQI is not a straigh- line.

Part 11 is a Basic Part (NTYPE=l) with Rl(l) = R2(l)
-- .325 and angles TH(U) = 327.4210 and TH(2) = 355.00.

The final task is to delete the four holes centered
at 0, Q, R and T. The radii of these (cylindrical) holes,
which are treated as Basic Parts (NTYPE=0), can be read
from two section drawings A-A and B-B (Figures 9a and 9b)
and the locations of their centers, which are used as
origins of their Input Systems, can be obtained from the
basic blueprints.

For Hole 1 centered a-. 0, the density is -D'N,
Rl(l)=R2(1)=.0655 and no Translation information is necessary.

For Hole 2 centered at R, the density is - DEN, Rl(l)
= R2(l) = .0466 and the Translation information locating
the origin of the Input System at the projection of the
point R on the xy-plane is given by (XP, YP, ZF) = (-.05,
.29, 0.0).

For Hole 3 centered at T, Rl(1.) = R2(l) = .0466 and
the Translation information is given by (XP, YP, ZP)
(.212, -. 095, 0.0).

For Hole 4 centered at Q, Rii) = R2(l) = .076 and
for this Part (XP, YP, ZP) = (-.031314, -. 222810, 0.0).

All holes are accounted for (deleted and filled
with other material if necessary) at the very end, so
that if a hole penetrates through more than one Level,
it is treated only once - not for each Level it
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crosses, by setting its length H equal to the sum of the
lengths of the Levels it crosses (as long as its radius
is unchanged). In the present instance, the holes are

* deleted after only one Level because the overall object
being -onsidered here consists of only one Level. Thus
the holes are all Basic Parts (NTYPE=0) with DZ = .094
and 11=.095 as for all the other Parts in this Level 2
of the overall object. Throughout, the density DEN
of the (brass) Parts will be used in all cases, except for
the holes, all of which are assigned a density of DEN = -. 308.
Note that the units used in this Sample Case are consistent
because the length dimensions are alJ given in inches. The
inputs and output for this Sample Case are listed in
Appendix C.

1.5.4 Sample Case 4

The purpose of this sample case is to illustrate
the inputs and outputs for all 5 types of Basic Parts.
As will be pointed out, certain of these are nct expressed
using the simplest means possible. This is done to illus-
trate the longer printouts (for NPRNT=2) and when it is,
it will be pointed out along with the simpler method.

The first of these Basic Parts, for which NTYPE=0,
consists of 24 equiangular sectors of cylinders (each pair
of corresponding lower-z and upper-z radii are equal),
all with the comrron density 0.2, length 1.0, and lower-z
coordinate (displacement) 4.0. Because of the arrange-
ment of the radii in three groups of eight, the same Part
could have been (more easily) represented by a Basic Part
(NTYPE=0) with three sectors and radii of 1.0, 2.0, and
3.0; the present form is used for illustrative purposes
only.

Considering the Rotation/Translation information,
obviously if the directions and origin of the Input System
for this Part are as indicated, then this iystem must be
identical to the Reference System. In fact, this is true
for all five Parts in this sample case, and although it
could have been indicated each time by omitting all Rotation
and Translation information, "dummy" data has been included
here also to obtain a printout containing all inputs for Basic
Parts.
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The second Basic Part, NTYPE=l, is a Floating 90*
Sector, from 450 to 135', with density 0.1, length 1.0,
displacement 1.0, with radii 1.0 and 2.0 (at the z=l.0 and
z=2.0 ends respectively). Again the Input System of this
Part has been chosen to be identical to the Reference
System.

The third Basic Part, NTYPE=2, consists of the
remaining three quarters of the frustum from which the
second Basic Part was taken. Since the lower angle of
this Part is assumed to be at 00, it consists of three
sectors, from 00 to 450, 450 to 1350 and 1350 to 3600.
The first and last of these have been given end radii of
1.0 and 2.0 as tor the previous Part, but the seccnd has
been omitted by setting both of its end radii equal to
zero (which is the only proper way to omit a sector of
a Basic Part). Thus, the second and third Basic Parts
together could more easily be represented as one complete
frustum with radii 1.0 and 2.0, length 1.0 and density
0.1, situated about the Reference System z-axis from z=
1.0 to z=2.0.

The fourth Basic Part, NTYPE=3, consists of 24
equiangular sectors (150 each) whose density RH(J),
J=1,...,24 varies by sector. Because of the arrangement
of the radii and cdensity, this same Part could have been
represented by a Basic Part (NTYPE=3) with only three
sectors with radii (at both ends) of 1.0, 2.0 and 3.0
and densities of 0.1, 0.1 and 0.2 respectively. One should
note that the density DEN for this Part is inputted as
0.0 on Card type 3a, so that the value DEN1 = 0.1 is
substituted for it and the result is as if DEN = 0.1
had been read in initially.

Also, the first 8 values of RH(J) are blank; these
will be read in as zeroes and the default value DEN
0.1 (itself a default value) for this Part will be used

4 in its place.

The final Basic Part, NTYPE=4, consists of 24
sectors with varying angular measure and density. Again
because of the arrangement of radii, upper angles and
densities, this Part could be more simply represented by
a Basic Part (NTYPE=4) with three sectors, from 00 to
800, 800 to 200*, and 2000 to 3600, with radii 1.0, 2.0,
and 3.0 (hLth ends) and densities 0.1, 0.1, and 0.2
respectively. Each of its sectors extends from z=0.0
(i.e., DZ) to z=l.0 (DZ+H'.
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In all cases, only the (optional) data which applies
as indicated by NTYPE, NJ, NR and NTR will be read in
and printed out. If the input data does not match that
signalled by these indicators, errors will invariably
occur. A printout with NPRNT=2 will show all tne information
which has seen supplied by the user (generally in the
same order as un tne input cards) and is therefore of
great use in checking inputs. The inputs and outnut for this
Sample Case are listed in Appendix D.
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2.0 PROGRAMMER'S GUIDE

The computer program MOMENTS-II is written in FORTRAN
(EXTENDED) for CDC 6000 series computers, and its purpose
is to calculate the moments and products of inertia and
other physical properties of inputted objects., MOMENTS-II
is not highly machine depeihdent and therefore can easily
be converted to run on other computers. It is sufficiently
modularized to permit easy understanding and modification.

This chapter provides Eufficient information about
the actual FORTRAN routines to enable one to follow the
calculations in MOMENTS-II and to modify the coding if
desired. It explains the main routine and the subroutines,
providing flowcharts and dictionaries of FORTRAN variables
(where necessary) in addition to explaining the purpose of
each routine and the calc ilations performed, with references
to the User's Guide and to the Analyst's Guide where necessary.

2.1 MAIN ROUTINE

This section describes the main routine, which controls
the flow of the program including readinr the inputs, calling
the subroutines to do the calculations and writing the output.
All I/O statements appear in the main routine and all major
computations are performed in the subroutines, although
certain minor calculations are performed in the main routine.
The following subsections further describe the main routine,
including an explanation of its execution, a dictionary
of its FORTRAN variables and a flow chart of its logical
steps.

2.1.1 Execution of the Main Routine

The organization of the Main routine is quite straight-
forward; aside from reading all the inputs and writing
all the outputs, the basic functions it performs are calling
the proper subroutines to calculate the properties of the
inputted Parts (one at a time), and using these to calculate
the desired properties of the entire composite body. After
initializing certain indices, linecounts and properties,
MOMENTS-II first reads the Title and Option Cards to find
the default values, the type of printout required, and the
number of each type of Part for the current case. A summary
of this information is then printed out after which the
routine begins its first task of analyzing the Parts
individually.
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The following sequence of logical steps is then per-
formed for each "Unknown Part" until only Known Parts remain
to be read in. All the input cards pertaining to the Part
are read in (the programn "knows" what type of Part is being
read in from the option Card and the assumed order of the
input cards) and the inputs are printed according to the
option NPRNT. Next, the main routine calls either SUB-
ROUTINE BASIC, WEDGE, WEDGEl or CONCAVE, depending on
whether the Part is a Basic Part, Standard Wedge, Angular
Wedge or Concave Part respectively. These routines, as
explained in the sequel, always calculate the relevant
properties of the Part with respect to its Input System.
If Rotation information is supplied for the Part (NR=l),
SUBROUTINE ROTATE will be called to use these properties
to calculate the properties of the Part with respect to
a set of axes with origin coinciding with that of the Input
System but parallel to the Reference Axes. If Translation
information is supplied (NTR:=l), SUBROUTINE TRANSL will be
called to use this information to calculate the properties
of the Part (usually) with respect to the Reference System.
The output for a Part, containing its mass, volume (both
negative if the Part is to be deleted) and center of gravity
(in Reference Coordinates) is then printed out. (The
moments and Products with respect to the Reference System
are not printed here, but this capability could be easily
added.) The program then adds these properties (moments,
products, mass, volume) to the current totals which have
been initialized to zero.

After this complete process has been performed for
all Basic Parts, all Wedges and for all Concave Parts, the
program must next consider the Known Parts. This is basic-

are no calls to any subroutine to calculate the properties

(with respect to its Input System) because they are already
known. The procedure in this case is as follows: After
reading the inputs and writing them, the Reference Coordinates
of the center of gravity of the Known Part (CGX, CGY, CGZ)
are saved in XP, YP, ZP because they are also the coordinates
of the origin of its Input System, and if necessary, ROTATE
is called to adjust the (known, inputted) moments and
products with respect to this Input System, to a coordinate
system with origin at the center of gr-vity of the Part but
with axes parallel to the Reference Axes. The difference
is that here SUBROUTINE TRANSL is called automatically to
translate the properties from the center ofgravity based
system to the Reference System. Because subroutines ROTATE
and TRANSL require coordinates of the center of gravity in
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the same system as the moments and products (the Input
System) at the time, the center of gravity coordinates
CGX, CGY, CGZ of the Known Part in the present (CG) system
are here set to zero before calling either ROTATE or
TRANSL. As before, these properties are then added to the
current sum.

Whe.n all Parts have been processed, the tota: (additive)
properties have been computed (with respect to the Reference
System) by merely accumulating the individual results. It
should be remembered that Parts to be deleted, signified
by either negative DEN (for Unknown Parts) or negative AMASS
(for Known Parts), will have the signs reversed on their

moments, products, mass and volume, i.e., the mass and volume
of objects to be deleted will always be negative. Thus
for these objects, the accumulation of their properties will
actually be a subtraction (addition of the negative), as
is proper when deleting a Part.

The calculation of the overall center of gravity and
net volume is then performed, after which the moments and
products are transformed in the main routine, via the same
type Moment and Product translations as in TRANSL and
using equations (43) and (45) specialized to the case
X=Y'=Z=0 (see next to last paragraph in 2.3.2) to the CG-
System of the overall object. Then SUBROUTINE EIGENV is
called to find the eigenvalues and eigenvectors of the inertia
tensor (the symmetric matrix whose six upper triangular
components are the moments and products of inertia - see 2.6)
which are called the principal moments and principal axes
of the entire bcdy. All of the above quantities are printed
on the final pagre of output.
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2.1.2 Major FORTRAN Variables in Main Routine (floating point)

VARIABLE EXPLANATION (Corresponding Symbol in Ch. 3)

A(6) Upper haJf of symmetric inertia tensor
matrix

rcc cr. CG C G C G cc.
Ixx, Ixy, Iyy, Ixz, Iyz, Izz

AMASS Mass of a Part (m)

CGX,CGY,CGZ Coordinates of CG of a Part (7, 7, 7)

DEN Density of a Part (p)

DEN1 Default density of Part

DZ Minimum (Input System) z-coordinate of
Part (D)

E Eigenvectors or principal axes of inertia
tensor matrix

H Length of a Part (H)

RH(72) Array of densities (by sector) for a,
Basic Part

RM(3,3) Rotation matrix (Rij)

RR1,RR2 Heights or "radii" of Wedges (R1,R 2 )

RSQ Sum of squares of the CG coordinates
(x2 + y2 + z 2 )

Rl(72) Lower z-coordinate end radii of Basic
Parts (R,)

R2(72) Upper z-coordinate end radii of Basic
Parts (R2 )

"S" symbols These symbols, all beginning with the
letter S, represent properties of the
entire object rather than of a single
Part. The symbol remaining after deleting
the prefix "S" indicates what the symbol
stands for and can generally be found in

* this table. For example, since CGX is
the symbol for the x-coordinate of the
CG of the Part, SCGX is the symbol for
the x-coordinate of the CG of the entire
object.
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TH(72) Upper angles of sectors of Basic Parts

(t,T)

VOL Volume of a Part (V)

VOLN Negative volume, corresponds to negative
density.

VOLNT VOLNT = SVOL + SVOLN = net volume of object

W Width of Standard Wedge (W)

XC, YC Out-center of cylinder for defining Concave
Part.

XP, YP, ZP Reference Coordinates for origin of
Input System of a Part.

X2,Y2,Z2 SXSG* XC9, SYCG*SYCG, SZCG*SZCG

All other X, Y, and Z symbols are defined by integrals:

X fffxdm (Myz)

Y fffydm (Mxz)

z fffzdm (Mxy)

XX If! (y2+z 2 )dm (Ixx)

YY fff(x 2+z2 )dm (Iyy)

2 2
ZZ !ff(x +y )dm (Izz)

XY -fffxydm (Ixy)

xz -I ffxzdm (Ixz)

YZ -fffyzdm (Iyz)
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2.1.3 Major FORTRAN Variables in Main Routine (fixed point)

VARIABLE EXPLANATION

I Index used for Parts
* IDENT Ten character (A10 format) iden-

tification for Parts
Ii, 12, 13, 14 Number of Basic, Wedge, Concave and

Known Parts (respectively)
J Index used for sectors (J=l, NJ)
LNl, LN2, LN3 Line counts for output for Basic,
LN4 Wedge, Concave and Known Parts
Li Line increment for Basic Parts
NJ Number of sectors in a Basic Part
NJI Default number of sectors in a Basic

Part
NPART Indicates type of current Part
NPRNT Input controlling printing options
NR Indicator for Rotation
NTR Indicator for Translation
NTYPE Indicator for kind of Basic Part
N1, N2, N3, N4 Number of Basic, Wedge, Concave and

Known Parts (respectively)

2.1.4 Flow Chart of Main Routine

The following page contains a flow chart illustrating
the logical steps in the main routine, corresponding to the
outline in 2.1.1. Those operations which appear in paren-
theses in the flow chart are optional and depend on values
of NPRNT, NR, and NTR for their inclusion or exclusion. The
decision on whether there are more cases or not is simply a
check on the end of the Input File, and the decision on
whether there are more of a specific type of Part remaining
is simply the result of a comparison of the number of the
current Part (Il, 12, 13 or 14) with the total number of
that type Part (NI, N2, N3 or N4, respectively).
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i es

S~Read TITLE, OPTION Cards

Write Option page

BASICS? WEDGES? ONCAVES? KOWNS?

NPART = 1 NPART = 2 NPART =3 NPART = 4
Read inputs Read Inputs Read Inputs Read Inputs

(Write Inputs) (Write Inputs) Write Inputs) (write Inputs

CALL BASIC CALL WEDGE,1 CALL CONCAVE (CALL ROTATE)

(CALL ROTATE) (CALL ROTATE) (CALL ROTATE) CALL TRANS

(CALL TRANSL) (CALL TR.ANSL) (CALL TRANSL) (Write Outputon FILE 1 )
(Write Output (Write Output (Write Output

on FILE, 17- on FILE l17 on FILE 1)

* Accumulate Additive Properties

with respect to REFERENCE AXESiI

GO To (2,30,50,60),NPART

Compute C.G. and Transform Inertia
Tensor to C.G.-SYSTEM

CALL EIGENV for Principal Moments, Axes
Write Results on final Output Page
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2.2 SUBROUTINE BASIC

This subroutine calculates the moments and products
X, Y, Z, XX, YY, ZZ, XY, XZ and YZ and the properties AMASS,
VOL, CGX, CGY, CGZ for a single Basic Part, using the
necessary Dimensional inputs for the current Basic Part
obtained from COMMON. After initializing the necessary
properties to zero, the subroutine sets up the elements of
the array of angles T(J), J=l,... NJ+l defining the NJ
(angulat) sectors of the Part, in a manner depending on the
type of Basic Part under consideration (as indicated by
the value of NTYPE, see 1.3.2). For a Floating Sector
(NTYPE=l) this merely amounts to converting the lower and
upper angles TH(l) and TH(2) in degrees, to T(l) and T(2)
in radians. In all other cases, T(l) is set to zero and
T(J) for J=2,...,NJ+l are set as follows. If NTYPE=0 or
NTYPE=3, the angular measure DT of a sector is fixed (it
equals 2n/NJ), the angles are defined by T(J) = (J-l) * DT
for J=2,...,NJ and T(NJ+l) = 0. If NTYPE=2 or NTYPE=4,
DT is variable and the sector angles T(J) are computed from
the upper angles TH(J) using T(J+I)=TH(J) * CONY, for J=l,
... ,NJ. Note that whenever an upper angle TH(NJ) equals
3600, T(NJ4-l) is set to zero to prevent unnecessary roundoff
errors which would be introduced if one converted 360e
to radians before taking trigonometric functions of the
angle.

The subroutine nc.xt enters a loop which calculates
the quantities for the sectors of the Basic Part one at
a time, and then sums them up. This calculation produces
the moments without the multiplicative constants, which are
put in afterwards. If NTYPE=0 or NTYPE=3, DT is calculated
in the loop for each sector as DT=T(J+l)-T(J). Because
T(NJ+l) may have been set to zero, DT may be non-positive
in which case 21r is added to it. If variable density is
chosen (NTYPE=3 or NTYPE=4), the density DEN used in the
loop for each sector is set to RH(J); otherwise, the common
value DEN is assumed.

The moments XSQ, YSQ AND ZSQ are converted to the more
useful XX, YY and ZZ in the final section, in which the
constants are inserted. The coordinates of the center of
gravity of the Basic Part are computed here in the form
X/AM, where AM=AMASS unless AMASS=0, in which case AM=l,
so that the coordinates of the center of gravity will be
calculated as zero (because X=0) in the special case.
This method is used in WEDGE, WEDGEl, and CONCAVE also.
The calculations performed in BASIC follow equations (8)
to (20) in 3.1.
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Most tf the FORTRAN variables appearing in BASIC
are listed in 2.1.2 and 2.1.3. Those not listed there
may be found below:

VARIABLE (dimension) EXPLANATION (symbol used in Ch. 3)

B,B1,...,B9 Temporary storage locacions

CONV Conversion factor = ff/180

CI,...,C4 Constants

DT Angular measure of a sector
T (J+l) -T (J) . (T-t)

ST T(J+I)+T(J). (T+t)

T(73) Angles defining the sectors,
in radians (T's and t's)

XSQ, YSQ, ZSQ fffx2dmfffy 2dm,fffz 2 dm
(Ix 2 ,1 y ,Iz )

i

i
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2.3 SUBROUTINES ROTATE AND TRANSL

The two subroutines ROTATE and TRANSL serve to trans-
form the properties of Parts from initial coordinate systems
to Lotated and translated systems respectively. The basic
application of these routines is to enable one to transform
the moments and products of inertia, known with respect to
the Input System of a Part, to the Reference System. The
following two sub-sections will treat them individually.

2.3.1 SUBROUTINE ROTATE (RM)

The purpose of this routine is to transform the center
of gravity and moments and products of inertia of any Part,
already known with respect to some initial coordinate system,
into these same properties but with respect to a rotated
coordinate system, whose origin is, however, unchanged from
the first. The relationship between these two systems is
contained in the orthonormal rotation matrix RM (eqn. 48b)
whose columns express the directions of the three axes of
the initial coordinate system in terr.s of the rotated system's
coordinates. Once the nine components of RM are known, ROTATE
first calculates the new coordinates of the center of gravity
by multiplying the old coordinates by RUM (eqn. 55), and then
it calculates the components of the inertia tensor with respect
to the rotated system (eqn. 60) from the known properties of
the Part with respect to the initial coordinate system (which
it obtains from COMMON).

The most common application of this routine is to trans-
form properties of the Part, known with respect to its Input
System, into properties with respect to a coordinate system
with origin coinciding with that of the Input System but
rotated so as to be parallel t., the Reference System.
ROTATE performs this task when it is called by the main
routine.

The other use of ROTATE is to transform the properties
of a Wedge (created by the program) from its input coordinate
system to a rotated system which is parallel to the Input
System specified by the user in describing the Angular Wedge
under consideration at the time. ROT'ýTE serves this function
when it is called by WEDGEl. A further explanation of this
usage, which is also a specific case of its general purpose of
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performing a change of coordinates which is merely a
rotation of axes, is provided in 2.4 in the discussion of
WEDGE1.

It should be pointed out that there may seem to be a
certain redundancy in this routine because it transforms not
only the first moments but also the center of gravity (the
invariant mass relates the two sets of quantities according
to equation (13), in any coordinate system) instead of merely
transforming all vhe moments (including the first moments).
This is true to some extent, but the center of gravity "rans-
formation has betzi included in ROTATE to avoid the necessity
of performing this calculation after each call to ROTATE.
Because of the inclusion of this (CG) computation here, no
equations for directly transforming the first moments are
necessary at all (i.e., no redundant calculations are
performed); instedd, the first moments of inertia in the
rotated system are found from equation (13) in terms of the
mass and the (new) coordinates of the center of gravity,
which then have--already been calculated. For this reason,
before calling ROTATE, the center of gravity must always be
expressed in the same coordinate system with respect to which
the inertia tensor is expressed.

In SUBROUTINE ROTATE, RM is the rotation matrix, RT
is its transpose, U is the inertia tensor, and Xl, Yl, Zl
and TT are temporary storage locations. All other variables
areas in the main routine.

2.3.2 SUBROUTINE TRANSL (XP, YP, ZP)

The purpose of this routine is to transform the center
of gravity anm moments and products of inertia of any Part,
already known with respect to some initial coordinate system,
into these same properties but with respect to a translated
coordinate system, which is, however, parallel to the first.
The relationship between these two coordinate systems
is contained in the "translation vector" whose components
XP, YP and ZP are simply the (new) coordinates of the origin
of the initial coordinate system. Once these three components
are known, TRANSL first calculates the new coordinates of the
center of gravity of the Part using equation (41) and then it
calculates the components of the inertia tensor with respect
to the translated system using equations of the forms (A3)
and (45) from the known properties of the Part with respect

I
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to the initial coordinate system (which it obtains from COMMON).
The same remarks as were made in the discussion of ROTATE
regarding the seeming redundancy in transforming CGX, CGY,
CGZ as well as X, Y, and Z apply here as well. It should be
noted that the computation of the transformed first moments
must be done after -:ransforming the center of gravity because
the formulas iuhe-(43) and (45) are in terms of the new
coordinates of the center of gravity. If the centero-0- gravity
computation were at the end of this routine instead of at
the beginning, then the correct formulas to be used in
translating the inertia tensor would be (42) and (44).

The most coxrmon application of this routine is to
transform properties of a Part, known with respect to a
coordinate system with center coinciding with the origin of
the Input System and parallel to the Reference Axes, into
properties with respect to the Reference System. TRANSL
performs this function when it is called by the main routine.

Another application of this routine is to translate
properties of Angular Wedges or Basic Parts (created by the
program) from some initial coordinate system to translated
systems which may coincide with the Input System specified
by the user in describing the (complete) Angular Wedge or

S! Concave Part. TRANSL performs this function when it is
called by either WEDGE1 or CONCAVE. This use is explained
further in 2.4 and 2.5 in the discussions of the routines
WEDGE1 and CONCAVE.

The final application of TRANSL is in converting from
the Input System of a Known Part to the Reference System.
In contrast to the situation for Basic, Wedge and Concave
Parts, TRANSL is always called in analyzing Known Parts
because the origin of the Input System for a Known Part is
always at the center of gravity of the Part, which generally
does not coincide with the origin of the Reference System.
(If the two do coincide, TRANSL is called anyway, but with
arguments equal to zero, so that it has no effect, except
possibly to change signs for deleted Parts as noted below
in discussing the use of F.) Therefore, in this case XP,
YP and ZP representing the Reference Coordinates for the
origin of the (Known) Part's Input System must be equal to
(the inputs) CGX, CGY, CGZ representing the Reference Coor-
dinates of the Part's center of gravity. As was the case for
ROTATE, the center of gravity must always be expressed in
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the coordinate system with respect to which the inertia
tensor is expressed, before calling TRANSL. Therefore
CGX, CGY, CGZ are setto zero in the main routine since
obviously in its own Input System (CG-System) the coordinates
of the center of gravity of the Known Part are all zero.
Finally, if the mass of a Known Part is negative (i.e., if
the Part is to be deleted), F must be set to -1.0 in the wdin
routine (rdther than the normal value of 1.0). Since AMASS
has already been made negative by the user, this has the
effect of reversing the signs of the inputted moments and
products, as they should be when a Part is to be deleted.
The volume VOL is reversed in sign in the main routine. Thus
most of the necessary sign reversals have been incorporated
in TRAINSL (instead of in the main routine) which must be
called in this case anyway.

The reason that the main routine always calls ROTATE
before TRANSL (if both are needed) is that TRANSL requires
the (new) coordinates of the origin of the initial system.
These are available when the new system is the Reference
System, but if TRkNSL were called first, its purpose would
be to translate from the Input System to another system
parallel to it, and a multiplication by a rotation matrix
would be necessary to find the coordinates of the origin of
the Input System with iespect to this other coordinate system.
Therefore, calling ROTATE first, which already contains this
multiplication, avoids the necessity of intermixing rotational
and translational information -nd preserves the independence
of the two routines.
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2.4 WEDGE SUBROUTINES

This section describes the two subroutines WEDGE and
WrDGE1 whose purpose is to compute the properties of
Wedges, Standard and Angular respectively, with respect to
their Input Systems. Since an Angular Wedge can be viewed
is a combination of two Standard Wedges, SUBROUTINE WEDGEl
calls SUBROUTINE WEDGE twice in calculating the properties
of any Angular Wedge. The next subsections describe SUB-
ROUTINE WEDGE, SUBROUTINE WEDGEl and their interdependence,
and provide a flow chart of WEDGE1.

2.4.1 SUBROUTINE WEDGE

This subroutine is capable of calculating the moments,
products and other properties of a Standard Wedge with respect
to its Input System, using the Dimensional inputs for the
Wedge obtained from COM4ON. The eQuations used in these
computations are derived in 3.2.2 - 3.2.15.

SUBROUTINE WEDGE is called by the main routine to
calculate the properties of Standard Wedges and also by
WEDGE1 to supply the properties of the Standard Wedges
making up every Angular Wedge. In the two cases WEDGE com-
putes the properties with respecc to the Input System specified
by the user or by the program, respectively. The position of
the Standard Wedge relative to its Input System is completely
determined by DZ.

The variables B1 and B2 in this routine are set equal
to the two end heights Rl(l). R2(l) of the Wedge, and RD,
RS and RP are used here as the difference, sum and product
of B2 and Bl. The variables A and B as well as all those
beginning with the letter "R" are temporary storage locations,
and all other variables in WEDGE have the same meaninqs
there as in the main routine. None of the Dimensional quan-
tities of the current Wedge are changed by this routine, i e.,
the values of all variables set before calling WEDGE are
preserved.

2.4.2 SUBROUTINE WEDGE1

The purpose of this routine is to calculate the
properties of an Angular Wedge with respect to its Input
System. The method of accomplishing this is to represent
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each Angular Wedge as a combination (sum or difference) of
two Standard Wedges, each of whose properties are calculated
by calls to WEDGE. In essence, WEDGE1 does exactly what the
user would have to do in employing MOMENTS-II (but without
WEDGE1) to compute the properties of an Angular Wedge
with respect to its Input Axes; that is, the subroutine models
the Angular Wedge by describing to the program two Standard
Wedges which together comprise it, by providing the program
with tnthir Dimensional and Positional information. (Since
this includes specifying their Input Systems, a convention
regarding the relation of each of these "sub-wedges" to
its Input System must be fixed, so that this information can
be uniqualy assigned to these objects by WEDGEl when they are
considered as Standard Wedges.) The properties of the
Angular Wedge (now viewed as a composite object) can then be
obtained by adding (or subtracting) together the properties
of its two component Parts.

The method upon which WEDGE1 is based depends on
the possibility of constructing any Angular Wedge from
either the sum or from the difference of two "component
Wedges" ("su-S--wedges"); it varies significantly between
the two cases. The variations in logical steps between
the two cases are briefly summarized here; a more complete
explanation can be found in 3.5.

In the first case, WEDGE1 chooses a particular one
of these two sub-wedges and, once it sets up the Wedge's
Dimensional variables, it calls SUBROUTINE WEDGE1 to com-
pute the properties of this object with respect to its
Input System. It then calls SUBROUTINE ROTATE to trans-
form these to properties of the Standard Wedge with respect
to a set of axes parallel to the Input Axes of the Angular
Wedge (but with center at the origin of the Input System of
the Standard Wedge). Next, WEDGE1 sets up the "Dimen-
sional variables for the other sub-wedge (eqn. 65), and
again calls WEDGE to compute the properties of this ob-
ject with respect to its Inpu:t System. In this first
case, the two sub-wedges have different Input Systems, which
do, however, have the same origin, so that ROTATE must be
called again (with a different rotation matrix) to obtain
the properties of this second Standard Wedge with respect
to the same system as for the first one. Then, the properties
of the combination of the two sub-wedges (i.e., the Angular
Wedge) are found with respect to this same set of axes; most
of its properties are simply the sum of those of its two

6
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sub-wedges, except for the coordinates of its center of
gravity, which are found by adding together the first
moments and also the masses of the component Parts and
using the standard formulae (13) on these sums. Finally,
TPANSL is called to transform tVe properties of the
Angular Wedge to its own Input System (as specified by
the user), which is the desired result.

In the second case, where the Angular Wedge is repre-
sented as the difference of two Standard Wedges, these
two "sub-wedges" are chosen to have the same Input Axes,
so that WEDGE is called twice, to find the properties of
these objects with respect to this common set of axes
(once with positive density and once with neqative
density). These properties are summed as before to obtain
the properties of the combination (the Angular Wedge) with
respect to the Input System of the sub-wedges , and then
these properties are rotated by calling ROTATE (once)
to obtain them with respect to a coordinate system with
origin coinciding with that of the common Input System but
which is now parallel to the Input System of the Angular
Wedge. Finally, as before, TRANSL is called to transform
these properties to the Input System of the Angular Wedge,
i.e., the one chosen by the user.

It should be noted that if the Input System and
Reference System do not coincide, these results will again
be sent to subroutines ROTATE/TRANSL (as controlled by
the user's choice of NR and NTR) from the main routine
(after leaving SUBROUTINE WEDGE1) as for other types of
Parts, independent of the "TRANSLating" and "ROTATEing" that
has already occurred internally unbeknownst to the user.

The specific information regarding the methods of
deciding whether a sum or a difference of Standard Wedges
should be used, choosing the two Standard Wedges which are
combined to form the Angular Wedge, setting up the Dimen-
sional information describing each Wedge before each
call to WEDGE1, setting up the proper rotation matrices
R14 (containing the Positional information) before calling
ROTATE, and setting up the arguments P1, P2 and P3 for the
translation (before calling TRANSL), as well as the derivation
of the equations used in these processes by WEDGE1, all
can be found in 3.5.
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2.4.3 WEDGE1 - Coding

The first section of coding is the initialization
section which contains the calculation of various lenqths
and trigonometric functions of the angles in Fig. 12 which
apply to both cases, such as d, r, sin A, cos A and cos B
(from eqn. - 61, 62, 63) which are called D, BASE,
SINA, COSA and COSB respectively in WEDGE1. (The names of
the variables in WEDGE1 correspond very closely to the
notation in 3.5, which contains the relevant derivations.)
Included here are the unchanging elements in the rotation
matrix RM, which will be passed to ROTATE and used to
adjust the moments and products computed by WEDGE for
the two Standard Wedges (eqn. 69). Also, the original input
quantities (supplied by the iser) DZ, H, Rl(l), R1(2) (the
last two correspond to the u! 'r's RRI, RR2) are saved here
to be restored before returning to the main routine, since
they must be reset and passed to WEDGE in the course of
the calculations. For any of the sub-wedges passed to
WEDGE, their width W is set to the inrutted length (H)
and since all the Wedges are true Wedges, R1(2) is set to
zero here as well (eqn. 65).

Next, the proper case is determined depending on
whether both angles A and B (see 3.5) are acute (NCASE=l)
or whether one of them is obtuse (NCASE=2). The path taken
in the remainder of the subroutine depends on NCASE and
follows the general procedure outlined in 2.4.2. The
major differences between these cases are the definition
of Rl(l) for each sub-wedge, the number and elements of
the rotations performed. If NCASE=l, the properties of
the two sub-wedges are individually computed and rotated,
combined, and then translated. If NCASE=2, the properties
are individually computed, but the second Wedge (which is
actually contained in the first one) is given a negative
density so that the combining of properties which follows is
tantamount to a subtraction rather than to an addition.

It should be noted here that the initial center of
gravity calculations are always performed in WEDGE, but it
is the first moments of inertia (also calculated there)
that are summed beforb computing the center of gravity
using the usual formulas. In all cases, a correct set of
three center-of-gravity coordinates is stored in the variables
CGX, CGY and CGZ (in COMMON) before ROTATE or TRANSL are
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called. The rotation matrices for NCASE=l are always fixed,
but the one for NCASE=2 could match either of these two
and depends on whether it is A or B which is obtuse (this
is checked by the sign of COSB).

The final section of coding does not depend on NCASE
and it is here that the call to TRANSL is made to adjust
the properties of the (composite) Angular Wedge to its
Input System. This call to TRANSL takes into account
the DZ supplied by the user for the Angular Wedge, so that
DZ is restored before this call; the other variables are
restored before leaving the subroutine. All of the above is
summarized by the flow chart to follow.

I
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Determine, Proper Case

START Sot up inputs for WEDGE

CALL Wiý.DGE

Save Results for First WEDGE

Set up Inputs for WEDGE

CALL WEDGE

Sum up Properties of Two WEDGES

~iowChar of UBCOTIN WEDGTEl R
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2.5 SUDROUTItiE CONCAVE (XPYP)

The purpose of this routine is to compute the proper-
ties of Concave Parts, with respect to their Input Systems.
The method of accomplishing this is related to that ex-
plained in the preceding section for Angular Wedges;
that i_-, each Concave Part is modelled by the subroutine,
by decomaposinig it into a combination of Parts which can
already he handled by MOMENTS-II (w~ithout SUBROUTINE
CONCAVE). Here, however, a Concave Part is constructed
from three Parts - two Angular Wedges (which are added)
and one Ba~sic Part (Floating Sector, which is subtracted).
As before, the properties of the resulting sum (the Basic
Part is actually deleted; i.e., added with1 a minus sign
preceding all. its properties) are just the sum of the
properties of the component parts, except that here, no
rotations and only a single translation (independent of
any specified by the user) are needed to find the properties
of the Concave Part with respect to its Input Axes.

The next subsections contain a further explanation
of the method (from a program point of view), a discussion
of the coding of CONCAVE with reference to the relevant
equations (derived in 3.6), and a flow chart of the
subroutine.

2.5.1 Method of SUBROUTINE CONCAVE

The method upon which CONCAVE is based depends
upon the possibility of constructing any Concave Part from
acombination of two Angular Wedges and a Basic Part. As

in 2.4.2 (for Angular Wedges), certain conventions for
choosing the Input Systems of these three Component Parts
must be fixed, and these will be obvious from the following

Basic Part are assumed to hav'e the same Input Axes.

Their properties (with respect to their common Input System,
whose axes are parallel to those in the Input System of
the overall Concave Part, but whose center is at the
point (XC, YC, DZ)) are computed by calls to the routines
WEDGEl and BASIC. These properties are added (actually,
the properties of the Basic Part are subtracted from
those of the Angular Wedge, by assigning the Basic Part
a density equal to -DEN) to obtain the properties of the
combination of the two with respect to the same axes.
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A call to TRANSL with arguments XC, YC and DZ then trans-
forms these to properties with respect to the Input
System of the Concave Part. Finally, the properties of
the remaining "centered" Angular Wedge are calculated by
another call to WEDGEl with respect to its Input System
(which coincides with the Input System of the Concave
Part), after which the properties are added as before.
The result is the desired properties of the Concave Part
with respect to its Input System.

The same two observations regarding computing the
center of gravity using the first moments of the compo-
nents, and the independence of any translation performed
here and any requested by the user (indicated by NTR and
called from the main routine) apply here as in 2.4.2.

Thus, the particular duties to be performed by
SUBROUTINE CONCAVE consist of calculating the dimen-
sions of the component Angular Wedges and Basic Part,
setting up the proper dimensions before each call to
WEDGE1 and BASIC, combining properties of the three
component Parts (by calling TRANSL and adding properties)
and restoring the original Dimensional inputs supplied by
the user, before leaving the routine. The method of con-
structing the Concave Part as a sum of three unique and
well defined objects rests on observing the diagram
(Fig. 5b) which illustrates the decomposition. The
equations representing the calculations performed by
Concave are derived in 3.6.

2.5.2 SUBROUTINE CONCAVE - Coding

The first section of SUBROUTINE CONCAVE saves
the inputs supplied by the user so that they will not
be destroyed when the variables in which they are stored
are used for calls to WEDGE1 and BASIC. The next section
sets up the inputs describing the Angular Wedge whose
center is at the "outcenter of the cylinder" (XC, YC, DZ),
following equations (70) to (73), and calls WEDGE1.
These results, including first moments in place of center
of gravity componenLs, are saved. Next, the inputs for
the Basic Sector, also centered at the above mentioned
point, are set up and BASIC is called. Following this,
the properties are added and the center of gravity of the
combination is computed, after which TRANSL is called to
transform the properties to the Input System of the
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Concave Part. These properties are saved, the original
inputs are restored (since they also describe the other
Angular Wedge whose Input System coincides with that
of the Concave Part), and WEDGE1 is again called to
analyze this object. Finally, these properties are
combined with the previous consolidation to obtain the
desired results.

The variables with "l"'s appended to their FORTRAN
names are used to store the results from WEDGE1 or from
TRANSL, or to retain the initial inputs. The other
variables are as in previous routines, except that those
set up before the first call to WEDGE1 correspond closely
to the notation in 3.6, in whizh their equations are derived.

6I

69

/ \ /



A Save Original Inputs
NPASS = 1

Set up Inputs for WEDGE1

CALL WEDGE1

l Savo Current Results

(of WEDGE1 or TRANSL)

ic Set up Inputs for WEDGE1

Pass? CALL WEDGE1

Set up Inputs for BASIC

CALL BASIC

Smup Properties i

Compute C.O.

SICALL TRANSL

S1NPASS = 2

Flow Chart of SUBROUTINE CONCAVE
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2.6 SUBROUTINE EIGENV (A,E)

This routine calculates the eigenvalues and eigen-

vectors of the symmetric inertia tensor (stored in the

array A); the eigenvectors are the principal axes and
the eigenvalues are the principal moments of the overall
object. EIGENV uses a standard Jacobi iteration scheme,
as described in Ref. 4, for example, which employs a
sequence of simple rotation matrices to repeatedly trans-
form the matrix A until its off-diagonal elements are suf-
ficiently reduced in magnitude, at which time the symmetric
matrix has been nearly diagonalized and its diagonal
elements are very nearly its eigenvalues. At the same
time the matrix E of eigenvectors is developed as the
product of these rotation matrices, E being initialized
as the identity matrix and thereafter multiplied by the
rotation matrix at each step. Because the matrix A is
a 3 x 3 symmetric matrix and the transformations are of
the form StAS, where S is the orthonormal rotation matrix
and "t" denotes transpose, the symmetry is preserved at
each step so that there are actually only three off-
diaconal elements whose squares need be considered.
The convergence of this version is the fastest of any
Jacobi scheme because it is the largest squared element
which is reduced to zero at each step. The process ends
if either 50 iterations have been performed or if the
sum of the square!s of the off-diagonal elements, SSQOD,
is less than 10 - times its initial value.

The intermediate calculations performed by the
routine are to compute the sine and cosine of the ro-
tation angle, because they define the rotation matrix;
rather than do the complete matrix multiplication, only
the nonzero terms in the results of these multiplications
appear in the program. The transformed A-matrix at each
step has six new elements, two reduced to zero, and one
(on the diagonal) unchanged after pre-and-post-multiplying
by the orthogonal rotation matrix and its transpose. Also,
two columns of the E-matrix change at each step and
one remains unchanged. These details all follow the
standard Jacobi analysis as found for example on pages
487-490 of Ref. 4.
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From an argument involving the invariance of the
trace of a matrix under a similarity transformation,
the fact that the matrix is of dimension three implies
that there must be a reduction in SSQOD by a factor not
larger than 2/3 at each step (excluding round-off error).
Thus if the reduction by a factor of 10-12 does not occur
by the 50th iteration, the answer is accepted and the
analysis in Ref. 1 shows that the reduction (excluding 9
round-off) will have been at %orst (2/3)50-1.568 x 10-9.
Usually the 10-12 reduction factor is reached long before
the 50th iteration.

The final section arranges the eigenvalues and
eigenvectors so that the eigenvector with the maxintum
absolute z-component is listed last and the order of the
other two vectors is chosen so as to form a right-handed
orthonormal system. The eigenvalues are ordered so as
conform with that chosen for their corresponding eigen-
Vectors.

The input to this routine is the array A(3,3) con-
taining the three diagonal and three upper triangular
elements of the inertia tensor matrix; the three lower
triangular elements of the symmetric matrix are inserted
at the beginning of EIGENV. The output consists of the
three eigenvectors stored in the columns of E(3,3) and
the corresponding eigenvalues stored in the diagonal
elements A(l,l), A(2,2) and A(3,3).

* The variable names in this routine, except for
A and E, are not related to any in the other routines.
The arrays AA and EE are duplicate copies of the A and
E arrays used as temporary storage, as is the variable
TEMP. CS, SN, CS2 and SN2 are the cosine and sine of
the rotation angle and their squares; IP and IQ are the
indices of the pivoted element and NOTPQ is the remain-
ing index which equals neither of these; "SS quantities"
are squares or sums of squares; and VLMBDA, VMU and VNU
are basically the (Greek letter) variables lambda, mu
and nu as in Ref. 4.
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3.0 ANALYST'S GUIDE

This chapter contains the mathematical d'~rivations of
most of the equations used by MOMENTS-II. Except for 3.5
and 3.6, it is virtually independent of Chapter 2 and is
merely a mathematical demonstration of the formulae upon
which must of the coding is based. The use of the equations
(derived herein) in the computer program is referenced Ain
the Programmer's Guide.

The formulae derived in the first two sections of this
chapter are those used in calculations relating to the geo-
metric and physical properties of Prototype Sectors and
Standard Wedges; they will be used to compute each of
these properties with respect to the (Input) coordinate
system as pictured in Fig. 2 and 3. The formulae derived
in the next two sections are those which enable one, given
the properties of Prototype Sectors and Standard Wedges
calculated with respect to those initial coordinate systems,
to obtain the properties with respect to translated and/or
rotated coordinate systems. The formulae derivcd in 3.5
and 3.6 enable one to combine the results of sections 3.1
and 3.2, using the rotation and translation equations of
sections 3.3 and 3.4 to allow the program to calculate the
properties of Angular Wedges and Concave Parts by con-
structing them from combinations of Prototype Sectors and

Standard Wedges.
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3.1 PROTOTYPE SECTORS

T)e purpose of this section is to provide the deri-
vation of the formulae for the various properties of a Pro-
totype Sector (defined in 1.2.1), which is actually an
angular sector of a frustum of a right circular cone whose
axis coincides with the z-axis (Fig. 1). The notation used
in this section for the dimensions of sectors is summarized
in 3.1.1, an explanation of the change of variables used
for the integrations is found in 3.1.2, and the actual
derivations of the expressions for the volume, mass, first
moments of inertia, center of gravity and moments and
products of inertia for a single Prototype Sector are found
in 3.1.3 - 3.1.15.

3.1.1 Notation for Dimension of Sectors

The following table contains the notation used
for dimensions of Prototype Sectors in 3.1. A Prototype
Sector is illustrated in Fig. 1; the symbols in the figure
are not those used here, but rather they are the corres-
ponding FORTRAN symbols, which are indicated below in
parentheses. The two sets of symbols are quite similar,
although not identical.

SYMBOL EXPLANATION

D Minimum z-coordinate of any point of
the Prototype Sector (DZ)

H Length of Prototype Sector, measured
parallel to z-axis (H)

t, T Lower and upper (smaller and larger)
angles of Prototype Sector (TH(U),
TH (2))

R,, R2 Radii at lower-z and upper-z ends of
Prototype Sector (Rl(l), R2(1))
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3.1.2 The Change of Variables for the Integrations

Most of the properties of Prototype Sectors are
defined as integrals of the form

ff f (x,y, z) dxdydz (W)

the region of the integration being the PrototyFl- Sector.
However, it is more convenient to change variables before
performing the integrations, from the (x,y,z) rectangular
coordinates to the (r,R,9) "conical coordinates" in which
r and 9 are as in cylindrical coordinates and R is the
upper limit on r. (R=R(z) is the radius of the frustum
at any z, and it is a linear function of z alone). To
obtain the relationship beteen R and z one can make use
of Fig. 10 in which triangles ABC and ADE are similar,
so that

R-R1  R2-R=

z-D H

which simplifies to

z = D + H R-R_
R2-R,

Because the angle 9 is measured from the positive x-axis
towards the positive y-axis, the relationship between
(x,y) and (r,G) can be expressed as the usual

x = r cos 9
y = r sin E

Thus the transformation bet' een the two systems is given by

x = r cos 9 (2a)
y = r sir 9 (2b)

4 z = D + H (R-j) (2c)
R-Ri

In performing the triple integiration, the form (1) will
be replaced by

ffIff(x(r,R,e),y(r,R,9),z(r,R,G))IJldrdRdE (3)
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-- I .. . -711

In this case the Jacobian J is given by -

(X,Y,Z) = Cos G 0 -r sin 6 = -Hr
J = Tr--,-R--,9) sin 9 0 r cos9 R2-R I

H
0 R 2-R 1  0 (4)

The limits on r are 0 to R, and those on G are t to T,
but the limits on R depend on the relative bizes of R and
R 2. There are three possible cases to consider, namely
RI<R2, R>R2, and R =R 2. If R1 <.R2 , then JR2-R.I=R 2-RV,
so that JJ = -J and the middle integral has limits
of R, to R2.

If R,>R2 then IR -RII=- (R 2-R,), so that JJl = +J;
but also the limits of integration on R are reversed R
to R, in this case, so that the result is the same as if
one had used -J (instead of JJJ ) but had integrated from
R1 to R2 as in the first case.

Thus the actual forw, of the integral used for evaluation
purposes is

T R 2  R
H I I I f(x(r,R,9),y(r,R,e),z(r,R, )) r drdRd9

R2-R 1 9=t R=R 1 r=0 (5)

The special case of a cylindrical sector R =R,=R 2
can be easily handled by using cylindrical coordinates
(rz,e) given by

x = r cos 9
y = r sin 9 (6)
z = z

The form of the integrals is then

T D+H R
I I I f(x(r,z,9),y(r,z,9),z) r drdzd9 (7)
G=t z=D r=0

where r= IJI and 9 is measured as described above. If
these integrations are carried out, the resulting formulae
are merely specializations to the case R =R =R of those
obtained in 3.2.3 - 3.2.15 using (5); this shows that the
expressions derived in the sequel are valid in all cases.
(The extension to this case could also be justified using
continuity arguments..)

In the remainder of this section the form (5) will be
used for evaluating the integrals over a Prototype Sector.
The limits of integration on r, R and 9 will be omitted:
they should be assumed identical with those in (5).
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Except for the calculation of the volume, the
(constant) density p will appear in front of each integral,
which may be written in the more concise form ffff(x,y,z)dm,
where m is mass and dm = pdxdydz.

3.1.3 V ff1 dxdydz = Volume

The volume V of a Prototype Sector is given by

V = H 1ff r drdRd9

which reduces to

V = (T-t) [R2 + R2 R, + R (8)

3.1.4 m = pfffdxdydz = Mass

Using (8) one finds the mass of the Prototype Sector
to be given by

m = pV = pH(T-t) JR2 + R R + R 2] (9)
2 1 (9

3.1.5 Myz = fffxdm = First moment about yz-plane

The moment Myz of the Prototype Sector is given by

Myz= •f fr 2 cos 9 drdRd9
R2 -R,

Perfcrming the integrations, the first moment
Myz of the Prototype Sector about the yz-plane is given by

Myz = PH (sin T - sin t) [RI + RR 1 + R2 R2 + R']
12

(10)

7,
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3.1.6 Mxz = fffydm = First moment about xz-plane

The moment Mxz is given by

Mxz = _ rffrr2min 9 drdRd9

Integrating one finds that the first moment Mxz of the
Prototype Sector about the xz-plane is given by

Mxz = (cos t - cos T)[R2 + R'R, + R 2 R 2 + R3] (11)

3.1.7 Mxy =fffzdm = First moment about xy-plane

The moment Mxy is given by

Mxy = pH ffIID + 11 (R-_R__)] r drdRd9
R2 -RR2-RI

Breaking this into two integrals, integrating, simplifying
and using (9) yields the Moment Mxy of the Prototype Sector,
given by

Mxy = mD + pH2 (T-t) [3R2 + 2R 2 R1 + R,2 (12)

3.1.8 Center 9f Gravity (

The formulae for the coordinates of the center of gravity
of the Prototype Sector are

S= Myz/m
S= Mxz/m (13)
z = Mxy/m,

where Myz, Mxz, and Mxy are as in 3.1.5-3.1.7. In all cases
the coordinates involved will be with respect to the same
coordinate system in which the first moments have been expressed.

3.1.9 Ix 2 -ffx 2 dm = Second moment about yz-plane

The moment Ix 2 of the Prototype Sector iq given by

Ix2 = H fffr'cos28 drdRde
R2 -R,

Integrating and using the trigonometric identity

sin(2T) - sin(2t) = 2 sin(T-t)cos(T+t),
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the second moment Ix 2 of the Prototype Sector about the yz-planeis given by

Ix= HI(T-t) + sin(T-t)cos(T+t) lRI + RRI + RR + RR + R•]

(14)
3.1.10 ly2 -fffy 2dm = Second moment about the xz-plane

The moment Iy 2 is given by

ly2 = pH ffI r 3sin 2 drdRde
R2-Ri

Proceeding as in 3.1.9, the second moment 1v of the
Prototype Sector about the xz-plane is given by

2 2 2 R•]IY2 PH[(T-t)-sin(T-t)cos(T+t)] [R4 + R2R, + R2R2 + R R3 +
40

(15)
3.1.11 Iza = Jffz 20m = Second moment about the xy-plane

The moment Iz2 is given by
iz2 H fIf[D + H(R-R 1 )] 2 r drdRdEIz = R2 -R1

Integration and further simplification yields

SIZ2 pH3 (T-t) (6R' + 3R 2R1 + R + H2 D_(T-t) [3R2 + 2RIR + R ]i ~ ~6 01 2" .

+ pHD 2 (T-t)[R, + R2 R + R2 1
6 

2

Substituting for m, using (9), adding and subtracting mD2 ,
and regrouping yields

IZ2 = p (T-t)(6R' + 3R 2 R, + R2) - mD2  •

60
+ 2D[mD + pH(-t)(3R2 + 2R 2 R, + R1)J

24

The term in square brackets is the moment Mxy given by (12),
so that this reduces to

IZ2 = (T-t)(6R2 + 3R 2 R, + R2) + 2MxyD mD2

60 (16)
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3.1.12 Ixx, Iyy, Izz Moments of inertia about the axes

Ixx = fff(yl + z 2)dm = moment of inertia about x-axis

Iyy = $fI(x 2 + z 2 )dm = moment of inertia about y-axis

Izz = fff(x 2 + y 2)dm = moment of inertia about z-axis

These quantities are evaluated for a Prototype Sector using
the results (14), (15), and (16) as follows:

Ixx = ly 2 + Iz 2

Iyy = Ix 2 + Iz 2  (17)

IZZ = Ix 2 + Iy 2

3.1.13 Ixz = -fffxzdm = xz-product of inertia

The product of inertia Ixz of the Prototype Sector is
given by

Ixz = -pH f$$ r 2 cos [D + H (R-R,)] drdRd9
R 2-R I R 2-RI

Breaking this into two parts, integrating and simplifying yields
the product ot inertia Ixz of the Prototype Sector, given by

Ixz = :%(sin T - sin t) [5D(R2 +R2RX + R 2R2 + R3

+ (4R + 3R2RI + 2R R 2 + R3)]

(18)

-- 3.1.14 Iyz = -I/f yzdm = yz-product of inertia

* The product of inertia Iyz is given by

Iyz H //fr 2 sine [D + H(R-R,)]drdRd_

Proceeding as in 3.2.13, one obtains the product of inertia
lyz of the Prototype Sector, given by

Iyz = h (cos t - cos T)[5D(R. + R2R, + R R2 + R1)

+ H(4R' + 3R2R1 + 2R2 R• + R•)I

(19)
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3.1.15 Ixy =-fffxydm xy-product of inertia

The product of inertia Ixy given by

Ixy = - f/frrssinecose drdRd9
R2-R,

Performing the integrations, and some trigonometric
simplifications, one finds the product of inertia Ixy of the
Prototype Sector to be given by

Ixy = r (cos2t - COS 2 T) [R4 + RIR1 + R2R2 + R2Rj + R4I

(20)
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3.2 STANDARD WEDGES

The purpose of this section is to provide the deri-
vations of the formulae for the various properties of the
Standard Wedge, which is actually either a complete right
angle wedge or one which has been sliced (truncated) by
a pline parallel to the xy-plane. The Wedge is assumed to
be positioned as indicated in Figure 3. The notation used
here for the dimensions of the Standard Wedge is summarized
in 3.2.1, an explanation of the change of variables used for
the integrations is found in 3.2.2, and the actual derivations
of the expressions for the volume, mass, first moments of
inertia, center of gravity, and moments and products of
inertia for a Standard Wedge are found in 3.2.3 - 3.2.15.

3.2.1 Notations for Dimensions of Standard Wedges

The following table contains the notation used for
dimensions of Standard Wedges in 3.2. A Standard Wedge is
illustrated in Figure 3; the (FORTRAN) symbols used in
the figure are shown below in parentheses after the explan-
ation of the corresponding symbol used in this section.

SYMBOL EXPLANATION

D Minimum. z-coordinate of any point
of the Standard Wedge (DZ)

H Length of Standard Wedge, measured
parallel to z-axis (H)

W Width of Standard Wedge, measured
parallel to y-axis (W)

RjR 2  Heights of Standard Wedge at its
lower-z and upper-z faces, measured
parallel to the x-axis (RRl, RR2)
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3.2.2 Change of Variables for Integrations

As was the case for Prototype Sectors, it is convenient
to change variables when integrating over a Standard Wedge.
The cocrdinates used here will be (x, y, R) , where R is
identically the same R discussed in 3.1.2 and is related to
z according to (2c). The reason that this same variable is
convenient for Wedges also is that the (side) cress-sectional
view (xz-plane) of Standard Wedges is identical to that in
the plane formed by the z-axis and any coplanar straight line
on the surface of the Prototype Sector. This means that
at any fixed z-value, the height of the Standard tNedge is
the same as the radius of the Prototype Sector (assuming,
of course, that both objects have the same D, H, R, and R2 ).
Thus both Figure 10 and the previous derivation for R as
a function of z apply here also. The x and y coordinates,
however, need not be replaced because the yz-plane cross
section of a Wedge is a rectangle. Therefore, the trans-
formation of coordinates used here is given by

x= X
y =y
z = D + H (R-R,

R2-RI ) (21)

In performing the triple integrations, the form used
will be

flff(x,y,z(R))JJJ dxdydR (22)

In this case the Jacobian J is given by

J •a(x yR) 0 0 0 = 12H
0 0 H3ax,y,R) 0 1 0R2R (23)

R 2- R1

Following the same line of reasoning as in 3.1.2, for the
first two cases, one can obtain the actual form of the
integrals used in the sequel, which is

R2  +W/2 R
H I I I f(x,y,z(R)) dxdydR

R2 -Ri R=R1  y=-W/2 x=O (24)

Here, the special case of a rectangular parallelepiped
R=R1 =R 2 can be handled easily by using ordinary rectangular
coordinates in which case the form of the integrals becomes

D+H +W/2 R
fI I f(x,y,z) dxdydz (25)
z=D y=-W/2 x=0
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As in 3.1, if these integrations are carried out
(for this special case) the resulting formulas are merely
specializations to this case of those formulas obtained
in 3.2.3 - 3.2.15 using (24); this shows that the expres-
sions derived in what follows are valid in all cases. Here
also, the limits of integration will be omitted henceforth
and those in (24) should be assumed. Finally, as in 3.1,
the shortened notation ffff(x,y,z)dm will be used in the
sub-section headings.

3.2.3 V = fffdxdydz = Volume

Since the xz-cross section of the Wedge is a trape-
zoid with bases R, and R 2 and height H, the cross sectional
area is given by

A = H (Ri+R 2 )

Since this cross section is constant and the width is W,
the volume is given by

V = WH (R1 +R 2 )

(26)

3.2.4 m = fffpdxdydz = Mass

Since the density p is constant throughout the Wedge,
its mass is given by m = pV or

m = pWH (RI+R2)
2 (27)

3.2.5 Myz = Iffxdm = First moment of inertia about the yz-plane

The moment Myz is given by

Myz H IMfx dxdydR
R2 -R,

Performing the integrations one obtains the formula for the
first moment Myz of the Standard Wedge

2 2
Myz =pHW(R 2 + R2RI + RI) (28)

6
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3.2.6 Mxy = fffzdm = First moment of inertia about the xy-plane

The first moment Mxy is given by

Mxy = fffIt [D + 11 (R-R!) ) dxdydR
R 2-RI R 2-RI

Breaking this into two integrals, integrating ard simpli-
fying yields the first moment of inertia Mxy of the Standard
Wedge, given by

Mxy = pHW (2R 2 + R 1)H + 3D(R 1 + R 2 )] (29)

6

3.2.7 Mxz = fffadm = First moment of inertia about the xz-plane

Because of the symmetry of the Standard Wedge about the
xz-plane, it is true that

Mxz = 0 (30)

This could also be seen by noting that in this case the
integral reduces to (24) with integrand y, so that the middle
integral will yield a zero result.

3.2.8 Center of Gravity = (xFz)

The formulae for the coordinates of the center of
gravity of the Standard Wedge are

x = Myz/m

MXz/m = 0 (31)

= Mxy/m

where Myz, Mxz and Mxy are given by (28), (29) and (30).
These coordinates will be with respect to the same coordinate
system in which the first monents have been expressed.

3.2.9 Ix 2 = fffx 2dm = Second moment of inertia about the

yz-plane

This second moment can be expressed as

x 2 = pH fffx2 dxdydR
R 2 -R,
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From this one obtains the expression for the second moment
1x2 of the Standard Wedge about the yz-plane.

Jx
2 

= (R + R2R, + R 2 R + ) (32)

3.2.10 Iy2 = fjfy 2dm = Second moment of inertia about the

xz-plane

This second moment can be expressed as

Iy 2 = pl fffy 2 dxdydR
R2-RI

which reduces to

iy 2 
= HI (RI + R 2 )

24 (33)

3.2.11 Jz
2 

= fffz 2dm = Second moment of inertia about the
xy-piane

This second moment can be expressed as

1z 2 = pH fff[D + H(R-RI )]2 dxdydR
R2-R,

Breaking this into three parts, integrating and simplifying
yields the formula for the second moment Iz 2 of the Standard
Wedge about the xy-plane,

IZ 2 = H[H2 (3R 2 +R1 ) + 4DH(2R 2+Ri) + 6D 2 (R +R 2 )] (34)

3.2.12 Ixx,Iyy,Izz = Moments of inertia about the axes

Ixx = fff(y 2 +z 2 )dm = moment of inertia about the x-axis.
Iyy = fff(x2 +z 2 )dm = moment of inertia about the y-axis.

SIzz = fff(x 2 +y 2 )dm = moment of inertia about the z-axis.

The quantities are evaluated for a Standard Wedge using the
results (32), (33) and (34) as follows:

Ixx = 1y2 + Iz 2

Iyy = Ix 2 + Iz 2  (35)
Izz = Ix 2 + Iy 2
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3.2.13 Ixz = -fffxzdm xz-product of inertia

This product of inertia is given by

Ixz = •H fffx[D + H(R-Ri )]dxdydR SRz-Ri 
R2-Ri

Integrating directly, or simply using the similarity to

the integral in 3.1.7 usina (12) and (9), one obtains the
Ixz product of inertia of the Standard Wedge

Ix4D([ 21 R+R +R + H(3R2 + 2R R + R2 )]
2z= 4DR1 (36)

3.2.14 Iyz = -fffyzdm = yz-product of inertia

Because of the symmetry of the Standard Wedge about

the xz-plane, it is true that

Iyz = 0 (37)

This could also be seen by noting the presence of y to an
even power in the integrand, which causes the second inte-
grating to yield a zero result.

3.2.15 Yxy = -.Tffxydm = xy-product of inertia

Because of the symmetry of the Standard Wedge about

the xz-plane

I Ixy = 0 (38)

This result could also be obtained as in 3.2.14.
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3.3 TRANSLATIONS

This section contains the derivations of the equ':'ions
for transforming the moments and products of inertia as
well as the center of gravity (calculated using the formulas
and methods of 3.1 - 3.2 with respect to an initial coordi-
nate system) under a translation, to a new coordinate sys-
tem which is parallel to the first but has a different
origin. Coordinates and quantities referred to the initial
system only will be denoted by the subscript or superscript
"o" (and coordinates and quantities in the translated system
will not). This transformation can be completely described
by specifying the three scalers (xp,Ypz ) which are the
new system coordinates of the origin of •he old system;
th-e corresponding cha-nge of variables is then given by

X = XO + Xp

y = Yo + yp (39)

z = ZO + Zp

In changing coordinates, it should be noted that the
'Jacobian J of this transformation is given by the determinant

1 0 0

J 0 1 0 = 1 (40)

0 0 1

as expected, since a translation alone does not change
volumes at all.

The next three subsections contain derivations of the
expressions for the coordinates of the center of gravity,
and for the moments and products of inertia in a translated
system, in terms of the center of gravity, moments, and
products of inertia in the initial system.

Z.3.1 Center of Gravity Translation

If the coordinates of the center of gravity of an
object are denoted by (x,y,z) and (ro,yopro) in the new and
old systems respectively, then using (39) one obtains that
the new coordinates of the center of gravity are given in
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terms of the old by

X = Xo +p•(

Y + yp

3.3.2 Moment translation

The transformation corresponding to a translation of
coordinates from an initial system (dcnoted by subscript
or superscript "o") to a new system, expressing the new
moments in terms of initial system quantities, is given by

IxX = I;.x + m[2y 7+ 2z *2 + (y2 + Z2)]PC c p p p
0_• + (yp2 + Z2)]

Iyy = Iyy + m[2x R + 2z "Z + (x 2 + z2) (42)
p0 p0 p p0

Izz = Izz + m[2xTc + 2yp7 0 + (x 2 + y 2 )]
p p

where the notation is the same as in 1.1 and 3.1.

The first of these formulas will be demonstrated,
derivations for the others being entirely analogous.
In all cases the region of integration is the same and the
limits in the different coordinate systems are chosen
accordingly.

By definition, Ixx R fff(yo + zo)dmo.

Writing down the definition of Ixx and performing the
change of variables (39) using (40) yields

Ixx - Iff(y2+Z2  Myo +yp) 2 + (Zo0+Z) ]IJZdmo

= jf! (yO+Zo) dmO + 2ypfffyodmo + 2zpfffzodmO + (yp+-p) fffdm0

= Ixx + 2y (mjo) + 2z (mio) +m(V 2 +Z2 )
p p 0 -Ppp

which reduces to the first of (42".

As before dm = pdxdydz and similarly here the notation
dm0 = pdxodyodzO is used to indicate the coordinate system.
Obviously dm= = JJJdmO dmO and the quantity mo representing
the mass in the initial coordinate system is never used since
m=mo .
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To write this in terms of new coordinates of the center
of gravity, one substitutes for ro,7o, and ZO using (41) and
simplifies, to obtain ,

Ixx = I.ox + m[yp(27-yp) + zp( 2Z-zp)] (43)

The forms represented by (43) and (45) express the new quan-
tities in terms of old quantities, except that they are in
terms of the new coordinates of the center of gravity. It
is these forms of the equations which are used by Subroutine
TRANSL, which applies equation (41) before applying either
(43) or (45).

3.3.3 Product Translations

The transformation of the products of inertia cor-
responding to a translation of coordinates from the initial
(so" system) to the new system can be expressed as

Ixy = IXy - m(xp7o + Ypro "6 Xpyp)

Ixz = Ix'z - m(xpzo + zpXO + xpZp) (44)

Iyz = IYz - m(ypZO + Zp7O + ypzp)

where the notation is as before.

Again, only the first of these will be demonstrated,
the others being entirely analogous, and the region of
integration is fixed.

By definition Ixy = -IffxoYodmo.

Writing down the definition of Ixy and performing the change
of variables (39) using (40), yields

Ixy -fffxydm = -fff(xo+xp) (yo+yp) IJidmo

= -Iffxoyodmo - xpfffyodmo - ypfffxodmo - xpypf 1dmo

= Ixy - xp(myo) - yp(mro) - mXpyp

which reduces to the first of (44).

To write this in terms of new coordinates of the center
of gravity, one substitutes for-X0, Y-o and Z-o using (41)
and simplifies to obtain

Ixy = IAy - m(x+p-Xpy) (45)

This is the form of the equation used by subroutine TRANSL.
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3.4 ROTATIONS

This section contains the derivations of the equations
for transforming the moments and products of inertia as
well as the center of gravity (calculated using the formu-
lae in 3.1 - 3.2 with respect to an initial coordinate
system) under a rotation to a new coordinate system. This
transformation can be completely described by specifying
the set of nine direction cosines (a',bi,ci) for i=l, 2, 3
of the (initial) old system axes wit. respect to the new.
Thus, if iojork are unit vectors along the initial system
xoY 0and zoaxes, and i,4,k are unit vectors along the
new systsim x, y, and z axes, the rotation can be expressed
as

10 = a, 1 + b c1 .i

30 = a2 + b 2 + C (46)=a•÷b +c

ko a 3i + b + c 3A.

Equivalently, the transformation used to express this
rotation in terms of the old and new coordinates is

x = a~xo + a 2 yo + a 3z

y = blx 0 + b 2yO + b3z (47)

z = clx 0 + c 2 yO + c 3Zo

This can be seen by writing any point P 4x ,y0 ,z0 I as a
vector in the old system as P x0 i0 + YoJo +Zoo,

substituting for io,Jo and ko in terms of_,l and k using
(46), and equating the coefficients of i,j, and k between
this and the representation for the same point P = (x,y,z)
in new coordinates as P = xi+yj+zk. Equation (47)' can be
expressed more concisely as follows. If =V 0 <xo0 o'zo> are
the initial systems components of a vector, then the new system
components of the same vector V are given by

V = RVO, (48a)
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where

a, a 2 a

R= b1  b 2 b 3 (48b)

c1  C 2 C 3

In performing the change of coordinates (47), the
Jacobian J of this transformation is given by the determinant

a, a2 a 3

J = Det(R) = b1  b 2 b = 1 (49)

cI c 2 C 3

as expected, since a rotation Alone does not change volumes
in any way.

The next sub-section provides some preliminary facts
about direction cosines; these are needed for the deriva-
tions of the expressions for the coordinates of the center
of gravity and the moments and products in the rotated
system in terms of old system quantities which are presented
in 3.4.3 - 3.4.4.

3.4.1 Direction Cosines

The quantities (ai,bi,ci) for i=1,2,3 referred
to in 3.4 are called direction cosines. If the angles between
the (old) 16 v~ctor and the new t,3,1 vectors are A1 1,B1 ,C1 ,
those ýetween jo and these axes are A2 ,B 2,C 2 , and those be-
tween kO and these axes are A 3,B 31 C 3, then the following
relationship holds between the angles and the ai,bi and ci's:

a, a 2 a 3 cosAj cosA2  cosA 3

b, b 2 b 3 I = COSB1  cosB2  cosB 3I I
C1  C2 C 3 cosC1  cOSC 2  COSC 3

In the sequel, the shorter (ai,bi,ci) notation will be employed
in place of the more cumbersome "cosines notation".
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By inverting (46) one can also express the new unit

vectors in terms of old as

t= al to + a23o + a3ý0

= b,•c + b +0 b,+ (50)

i= o + c23o + cX o

One can now use (46) and (50) to derive the sets of
relations among the direction cosines to be used in 3.4.3 -

3.4.4.

By noting the vectors ,3 and • are unit vectors
and using (46) one obtains

a2 + b2 + C7 = 1

a 2 + b+ c =1 (51)

a2 + b 2 + c 2 = 1
3 3 3

Taking dot products of the vectors with each other
(noting that the initial system is an orthogonal coordinate
system), one obtains

aa 2 + bib2 + c1 c 2 = 0

a,a 3 + bib3 + Lcc3 = 0 (52)

a 2 a 3 + bb b3 c + cc3 = 0

Similarly, the same two observations about the new
system using (50) yield:

a 2 + a22 + az= 1

b,2 + b2 + b2 = 1 (53)

C2 + c 2 + C= 1
1 2

and

a bI + a b• + a b6 - 0
a1b1  2-a + 3 30
ac + ac a +ac = 0 (54)

1 1 2 2 3 3

bcI + b 2 c + b 3c =0
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3.4.2 Center of Gravity Rotation

If the coordinates of the center of gravity of an
object are denoted by (x,y,z) and (xc,yozo) in the new
and old systems, respectively, then (47) yields the new
coordinates of the center of gravIty given by

r = a 5"o + a 7o + aZo

= bl 0 + b2To + b To (55)

z = cI Zo + C :7 0 + C 0

3.4.3 Moment Rotations

'Ihe transformation corresponding to the rotation
of coordinates (47) from an initial (old) system (denoted
by subscript or superscript "o) to a new system, expressing
the new moments of inertia in terms of initial system
quantities is given by

2 O" a Ozz

=2Ix + aa 2 y2 Y + 2a a Ixz +

2a 2a 31yz

Iyy = bI x + bI2yY + b2 Jz + 2bb 2 Ixy + 2bb 3 Iz +

2b 2 b 3IIy. (56)

Izz = c I x + C I2y + c 3 zz + 2c Ic 2 Iy + 2C, C3 IXZ
o

2c 2 c 3IYz

Only the first of these formulae will be demonstrated;
derivations for the others, being entirely analogous, will
not be presented here. (The entire resultant rotation effect
is summarized in 3.4.5).

The basic result comes from the definition of Ixx
and the rule for changing variables in multiple integrals.
Thus

IXX E ff!(y2+z 2 )dm - fff{Y(Xo0 ,oy,0 2)12 + [z(x ,yoz )]2)IJ[dm0
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Substituting (47) and (49) into this equation yields

lxx = .*'f~b'x6 + b-y-' + blzý + clx' + c-y6 + cz

"÷ 2bjb 2 xoyo + 2blb~xozo + 2b~b 3yozo

"+ 2clc 2 xoyo + 2clc•xozo + 2c~c 3 yozo]dmo

Using the definitions of Ic 2 , I•, Iz, Iy, Ixz and IYz

(see 1.1.1) to remove the integral signs yields

lxx = (bi+c')I 2 + (b2+c2), 2 + (b +c2)I2

-2(blbl+clc 2 )Icy -2(blb3 +clc'"Icz -2(b 2 b+*c~c 3 ) Iz

Using (51), (52) and the first of (53) to substitute for the
quantities in parentheses yields

2 0 + 2 2 2 + 2)zIxx (a2 +a, + (aa+a) + + (a+a 2

+ 2aa2Ixy + 2a~a Iz + 2a 2 a 3Iyz

Regrouping and using the definitions of Ixcx, I'y, and I~z
yields the required first equation of (56) which expresses the
moment ot inertia Ixx in the new system as a function of the
moments and products of inertia in the old coordinate system
and the direction cosines of the new i axis.

3.4.4 Product Rotations

The transformation of the products of inertia corres-
ponding to a rotation of coordinates from the initial ("o"
system) to the new system can be expressed as

Ixy = alb1 I;x + a2b2 1;y + a 3 b 3 Izz

+ (alb 2 +b~a 2 )Ixy + (alb 3+bla,)Ixz + (a 2 b 3 •b 2 a 3 )7yz
o o

Ixz - a1cIxx + a 2 c 221y + a 3 c 3 Izz (57)

(aCc2 +c a 2 )Ixy + (alc 3 +c a 3 )Ixz + (a 2c,+c2 a 3 )Iyz

Iyz = bIc I x + b2c21;y + b 3 c 3 Izz

+ (bc +cb c 3 +c b 3)Ixz + (b c 3 +c b 3 )Iyz,

where the notation is as before.
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Again, only the first of these will be demonstrated, the
others being entirely analogous. The basic result comes from
the definition of Ixy. Thus,

Ixy - -,Ilfxydm = -fff{x(xoyozo)y(xooyzO) IJ idm"

Substituting into this using (47) and (49) yields

Ixy = -fff[a1 b x 2 + a 2b.v 2 + a b 3z2 + a b~xoyo + al xz
IIC 20 0 3 0 0 ~

+ a2 b 3yozo + ba 2 xoY + b a 1,ozo+ b 2 a 3yZo]dmO

o2

Using the definitions of Ix , Iy 2 etc., this becomes

IxyX= -a2bI - a2 b2 Iy - a 3122 + (a, b 2 +ba)ixy

+ taib bl+a 3 )Ixoz + (a 2 b I4b 2a 3)I z

Appiying the first of (54) to the coefficients of the first
three terms yields

Ixy = (a 2 b2+a 3 3 )Ix 2 + (aIb,+a3b 3) I 2 + (ajbj+a 2 b2 )I0 2

+ (ab 2+bla 2 )Icy + (ab +b, a 3)Iz + (a 2 b 3+b 2a 3) I1z

Regrouping and using the definitions of Ixx, Ioy and I~z results
in the required first equations of (57), which expresses the
product of inertia Ixy in the new system as a function of tl'e
moments and products of inertia i_ the ýld coordinate system and
of the direction cosines of the I and J axes.

3.4.5 Rotations Revisited

Sub-Sections 3.4.3 and 3.4.4 show how one can derive
the expressions for the moments and products of inertia
"with respect to a new (rotated) coordinate system, in terms
of those with respect to an initial coordinate system.
These derivations were presented so as to require a minimal
amount of knowledge to understand; yet they do not resort
to overlooking basic facts about general rotations (a;,d to
taking the naive approach of decomposing a compound rotation
into a sequence of simple rotations about single axes ). The
following briefly outlines how one can obtain the same results
simply in another fashion, using a more elegant argument
requiring a slight knowledge of tensors.

If one uses matrix notation, one can obtain a concise
and revealing method of expressing relations (56) and (57)
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in a ringle form.ula. The inertia tensor T is dc:ined as the

tensor of rank two

Ixx Ixy Ixz

T = Ixy Iyy lyz (58)

Ixz Iyz Izz

and the inertia tensor in the original coordinate system lo
i§ defined similarly, with "o" superscripted quantities Ixx,
Ixy etc. appearing as elerents. A combination of the six
equations (56) .nd (57) can be written as

I - RIoRt (59)

where I and 1o are as above, R is given by j48) and "t"
denotes transpose. If one is willing to accept the fact
that the entity defined in (58) is a (contravariant) tensor
of rank two, then by definition it transfornrs under any
one-to-one change of coordinates as

mn ij
(I) = ax (1o) (60)

ax! a

where the integers outside the parentheses are component
indices (two indices in three-dimensional space yield a
total of nine components for the second rank tensor), "o"
indicates initial system coordinates, and all indices
appearing twice in any one term (namely i and j) must be
summed from 1 to 3. In the present case, the matrix of
values for Zxm for i,m=l,...,3 is merely R, given by

(48b), and the matrix of values (T)ij for i,j=l,...,3 is given
"by (58). Substituting these values into (60) one will obtain
the nine equations which are summarized in the concise form
(59), six of which are distinct and are given by (56) and
(57), as required.

The familiarity of the form of equation (59) is not a
coincidence, as can be seen by re-phrasing the above tensor
formulation as follows: whereas (50) is the standard method
for linearly transforming (contravariant) tensors of rank one
(i.e., vectors), the inertia tensor is a (contravariant)

* tensor of rank two and in the case where this transformation
is a rotation only it transforms thp same way as a matrix.
i T-aF -is, the rule-for transforming In to I under a pure rotation
is the special case of the familiar I = RIoR-, where the
matrix R is orthonormal so that R_-= Rt and (59) is obtained.
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3.5 ANGULAR WEDCES

The purpose of this section is to provide a detailed
explanation of the method of calculating the properties of

an "Angular Wedge", which is actually a triangular solid

such that its (triangular) ends are parallel to the xv-plane
and the line of intersection of two of its sid-2s lies on the
z-axis. The notation used in this section for the dimensions
of the Angular Wedge is sumaarized in 3.5.1, the method of
representing the Angular Wedge as a combination of two
Standard Wedges is su.,%.-arized in 3.5.2, and the derivavions
of the detailed descriptiors of these Standard Wedges for
.the two possible ca3es are provided in 3.5.3 and 3.5.4
thus completing the description of the method (these results
form the basis of subroutine WEDGE1, described in 2.4).

3.5.1 Notation for Dimensions of Anaular Wedges

ýThis table contains the notation used for dimensions
of Angular Wedges in section 3.5. An Angular Wedge is
illustrated in Fiqure 4; the (FORTRAN) symbols used in
the figure are shown below in parentheses.

SYMBOL EXPLANATION

D Minimum z-coordinate of any point on
Angular Wedge, measured with respect
to its own Input Axes (DZ)

H Length of Angular Wedge, measured parallel
to its Input z-axis (H)

tý-T Lower and upper angles of Angular Wedge
(TH(l), TH(2))

T-t (TH (2) -TH (1)

R1,R2 Radii at lower and upper arles of Angular
Wedge (RRI, RR2)
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3.5.2 Decomposing the Angular Wedge

The method of calculating the properties of an Angular
Wedge amounts to geometrically modelling it, or treating
it as a combination of two Standard Wedges whose properties
are calculated (with respect to their own Input Systems)
using the method outlined in 3.2. The method of representing
an Angular Wedge as a sum or difference of two Standard
Wedges is based on the following observation: By constructing
the altitude Lilane (EFGH in Fig. 11) from the edge of the
Angular Wedge which lies on the z-axis to face ABCD of the
Angular Wedge, one can create two "component right-angle
wedges" suc~h that:

a) If the altitude falls inside the Angular Wedge, then
the two newly formed right-angle wedges will both
be interior to the Angular Wedge, so that it can
be represented as their sum.

b) If the altitude falls outside the Angular Wedge
requiring the extension of face ABCD (as in Fig. 11),
one of the two newly formed right-angle wedges
will lie totally exterior to the Angular Wedge and
the other will contain both it and the Angular
Wedge, in which case the Angular Wedge can be
represented as the difference of the larger
and the smaller right-angle Wedges.

The application of this observation is that in either
case, each of these two "component right-angle wedges"
can be considered as a Standard Wedge (the special cases
Ri=O or R2=0 only, because they have five faces instcad of
the more general six) and can be described to the program
(as explained in 2.4), which can then calculate their
properties with respect to their Input Systems using the
method described in 3.2. (The fact that the Inkput System
of these Standard Wedges will. in general be different fcom
the Input System of the Angular Wedges under consideration
implies that these properties will have to be rotated and/
or translated by using the methods described in 3.3 - 3.4.)

This is the desired modelling of an Angular Wedge into
Standard Wedges, which, as is apparent from the above re-
marks, falls naturally into two cases according as the
Angular Wedge is to be expressed as a sum or as a difference
of the two Stindard Wedges. The remainder of t~his sub~-
section conta~ns derivations of expressions for certaia
quantities which are independent of which case is being con-
sidered, and it lays the groundwork for the detailed dis-
cuss ions of the two cases which can be found in the next
two subsections.
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Since the xy-cross section of the Angular Wedge is
constant, only that one cross section will be considered in
wPat follows; that is, without loss of generality, expzes-
sions will be derived for the relevant quantities describing
the two "'.ib-Wedges" using a two-dimensional approach con-
fined (almost) strictly to the xy-plane. Thus, triangle
AOB will be considered and con tructing its altitude PO
from side AB to the vertex at 0, the two cases can be
char-ci.rized as P on AB between A a7d B (NCASE=l - Fig. 12a)
and P on AB extended through A or B (NCASE=2 - Fig. 12b).

Fýurzm these figures, illuttrating the xy-cross section
of the Angular Wedge, one can see that if the angular
measure of the Wedge is given by 9 = T-t, then the length
d of side AB is given by

d / R+Rz - 2R 1 R 2 cose (61)

By constructing perpendiculars from B to OA (possibly
extended) and from A to OB (possibly extended), in all cases
one obtains

cosA = (R,-R 2cosG)/d (C2)

cosB = (R 2 -R cosE)/d

3.5.3 Angular Wedge as Sum of ýtandard Wedges

This sub-section treats the case (Fiq. 12a) in which
the altitude OP lies inside the triangle AOB and divides side
AB into segments AP and PB whose lengths are denoted by SA
and S1 respectively. The angle that PO makes with the positive
x-axis (measured counterclockwise from the x-axis to the
altitude) will be called a, and by considering triangles
AOP and BOP one can easily obtain

ai = t + (f/2 -A) (63a)
SA = R, cosA (63b)
SB = R 2 cosB

r = R, sinA (63c)

Also, by definition of a, the point P will have x and y
coordinates P1 and P2 given by

P1 = r cosa (64)
P 2 = r sina
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Using the above relations, it remains to specify the
Dimensional and Positional inputs describing the two sub-
wedges and the relationship of their Input System to that
assigned by the user (by choice of D, T, and t) to the
Angular Wedge. This entails specifying Input Systems for
each of the two sub-wedges in accordance with the rr'.es
governing the relationship between a Standard We'Jge 3.jd its
Input System (1.2.2). If these Standard Wedges were the six-
face variety, this choice would consist merely ot choosing
the displacement D and deciding on the sense of the z-axis.
Since they are, however, the special casc of th• ri'e-f~ce
Wedges, in addition to these two decisions the di;'-: 'ons of
the x and z axes must be chosen because Lhere is nG require-
ment relating to differentiating between the two vertices
(away from the right angle) in this case except by fixinc
the directions of these two axes. Thus, there is a limited
choice as to the Input Systems for these sub-wedges. For
definiteness, the following convention for assigning
Input Systems to these sub-wedges will be adhered to (this
must be done in order to program the algorithm involved).
The origin of the Input System for any of these sub-wedges
w'.ll be at the point P, the z-axis of this systemw will be
parallel to the aluitude PO, the x-axis will be in the plane
perpendicular to this altitude (positive sense in direction
parallel to directed line segment from P to whichever of
points A or B lies on the sub-wedg~e--,Tand the y-axis chosen
so as to form a right handed orthogonal coordinate system.
Positioning the origin of the Input System of the Standard
Wedges at tne right angle of the object implies that D=O
has been assumed for the Standard Wedges. Furthermore, from
Fig. 12a comparing it to the Standard Wedge and its Input
Axes (Fig. 3) the length of either of these sub-wedges (which
must be measured parallel to its Input System z-axis) will be
r, the width (measured parallel to its y-axis) will be the
length of the Angular Wedge, and the lower z height (measured
parallel to the x-axis) will be either S11 or S3 respectively.
(As mentioned above, the upper-z height is zero since the
sub-wedges are not truncated.) These dimensions, together
with the fact tS-E both of these Wedges are assigned the
same density as the Angular Wedge (because they are to be
added) provide the Dimensional information for the sub-wedges
considered as Standard Wedges. This description can be
summarized (notation of 3.2.1 for Standard Wedges in
parentheses on left side) as

Displacement (D) = 0
Length (H) - r
Width (W) = H (Length of Angular Wedge (65)
Lower-z height (RI) = SA or SB
Upper-z height (R2) = 0
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and it is this information substituted into the equa-
tions derived in 3.2 for Standard Wedges which is used to
provide the properties of these Standard Wedges with respect
to their respective Input Systems.

Since the next step is to compute the properties of
the combination of Standard Wedges with respect to the
Input System of the Angular Wedge, it is necessary to
describe the Input Systems of these two Standard Wedges
with reEpect to that of the Angular Wedge. The relation-
ships among these directions can be seen from Fi . 12a for
this case. The notation used here is that t,l,k will oe
unit vectors in directions of the positive x~y and z axes
of the Input System of a Standard Wedge and i,j,k are
unit vectors in directions of the xy and z axes of the
Input System of the Angular Wedge. Then, for the sub-wedge
containing angle A, using the convention stated above, by
observing Fig. 12a

1 (sin) - (cosa)
= " (66

k -(Cosa) 1 - (sins) V
Similarly, for the other sub-wedge containing angle B,

its (Input) z-axis is the same, its x-axis is now directed
in the opposite sense from the previous x-axis, and as a
result its y-axis is also reversed in sense. This then can
be summarized as

i = -(Oina) I + (cosa) I
4 (67
-(cosa) t- (sina)

Equations (66, 67) provide the necessary information fo
rotating the properties of the two sub-wedges from their
respective Input Systems to a system with the same origin
but parallel to the Input Axes of the Angular Wedge. To
complete the description of thq Input Systems of these two
Standard Wedges requires the z-coordinate P 3 of P=(P 1 ,P 2,P 3)
the common origin of the Input Systems of both Standard Wedq
(sub-wedges). From the overall Fig. 1i anQ uie re4uirt-_went
that the Input xz-plane of the Standard Wedge bisect the
Wedge, it is evident that P3 must be given by

P 3 = D + W/2 (68

The coordinates of P provide the necessary information for
translating the properties of the Angular Wedge (combination
of the two sub-wedges) from a system with origin at P to the
(parallel) Input System of the Angular Wedge.
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3.5.4 Angular Wedge as Difference of Standard Wedges

This sub-section treats the case(Fig. 12b, 12c) in which
the altitude OP lies outside triangle AOB so that P will lie on
BA extended through A or on BA extended through B, according
as A is obtuse or B is obtuse respectively. The present
case can be described by the condition that either A or B
is obtuse, in contrast to the first case where both A and B
were acute. Except for the change in signs in the rotation
matrix, the difference between the two sub-cases, depending
on whether it is A (case 2a) or whether it is B (case 2b)
which is obtuse (equivalently whether it is A or B which is
larger) is minor. Therefore, these two sub-cases are treated
together and all that follows applies to both cases unless
specifically stated otherwise, in which case two sets of
equations are presented.

The length of the newly created line segment (AP or BP)
will be called Q, otherwise the notation is as in the first
case; Figures 12b and 12c illustrate the notation in the
respective sub-cases. Equations (61), (62), and (63a, c)
remain valid here also, but (63b) must be replaced by

-R, cosA, A>B
0 •{ (63•)

-R 2 cosB, B>A

as can be seen from the figures.

As before, it remains to specify the Dimensional and
yositional inputs describing the two sub-wedges and the
relationship of their Input Systems to that assigned by the
user (by choice of D, T and t) to the Angular Wedge. The
previously mentioned convention will be followed here also.
Thus, from Fig. 11 comparing it to the Standard Wedge and
its Input Axes (Fig. 3), one finds that again the length
of either of these sub-wedges will be r, the width will
be the length of the Angular Wedge, and the lower-z height
will be either d+Q, for the larger wedge or Q, for the
smaller; as before the upper-z height is zero. These dimen-
sions, together with the fact that the larger of these two
wedges is assigned the same density as the Angular Wedge
and the smaller is assigned the negative of this density (so
that they will be subtracted) provide the Dimensional infor-
mation for the sub-wedges considered as Standard Wedges.
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This description can be summarized (notation of 3.2.1 in
parentheses on left side) as

Displacement (D) = 0
Length (H) = r
Width (W) = H (Length of the Angular Wedge
Lower-z height (RI) = d+Q or Q (6!
Upper-z (R2) = 0

and it is this information which is used to provide the
properties of these Standard Wedges with respect to their
corranon Input System. It is the previously assumed conventj
which insures that the origin of the Input System of the
two component Standard Wedges is located at P and that botl
Standard Wedges have the same Input System.

For case 2a, as in Fig.12b, the common Input Axes
of the two wedges are given in terms of the unit vectors ir
the directions of the Input System of the Angular Wedge by
(67) as for the "B Sub-Wedge" in case 1. For case 2b, as
in Figure 12c, equation (66) holds as for the "A Sub-Wedge'
in case 1. Thus the rotation matrices used to transform
the properties of these sub-wedges from their Input Systems
to systems parallel to the Input System of the Angular Wedc
are all of the two forms

Ssina 0 -Cosac
R = + cosa 0 -sine

1 0

As before, the coordinates of the common origin
P=(P 1 ,P 2 ,P 3 ) are given by equations (64) and (68).

Thus, all the equations have been derived for describi
both the Dimensional and Positional information of the
component sub-wedges into which any Angular Wedge can be
modelled. This allows one to transform the properties
of the component sub-wedges from their Input Systems to tha
of the Angular Wedge, thus enabling one to obtain the prope
of the Angular Wedge with respect to its own Input System.

104



3.6 CONCAVE PARTS

The purpose of this section is to show how one can
treat a Concave Part as a combination of two Angular Wedges
minus a Basic Part (Floating Sector). A Concave Part can be
pictured as an Angular Wedge which has had a segment cut out
of it by intersecting it with a right circular cylinder
whose center is exterior to the Part and is chosen so as to
form a non-convex object (see 1.2.4). Included herein are
derivations of expressions for the dimensio s of these three
component Parts in terms of those of the overall Concave
Part, and a relating of the position of the Input Systems
of the components to the Input System of the Concave Part.
(These results form the basis of the subroutine CONCAVE,
described in 2.5.)

3.6.1 Notation for Dimensions of Concave Parts

This table contains the notation used for dimensiors
of Concave Parts in section 3.5. A Concave Part is illustra-
ted in Fig. 5a; the FORTRAN symbols used in the figure are
shown below in parentheses.

SYMBOL EXPLANATION

D Minimum z-coordinate of any point on
the Concave Part, m-aqured with respect
to its own Input Axes (DZ).

H Length of Concave Part, measured
parallel to its Input z-axis (H).

t,T Lower and upper angles of Concave Part
(TH (1) ,TH (2)).

R1 1,R2  Radii at lower and upper angles of
Concave Part (Rl(l),Rl(2))

X X and Y (Input System) coordinates of
the center of the exterior cylinder which

defines the "concave area" of the Part
(XC,YC).
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3.6.2 Modelling the Concave Part

The method of calculating the properties of the
Concave Part requires that it be represented as a combina-
tion of Angular Wedges and Basic Parts, as described in
2.2, 2.4, 3.1 and 3.5. As in the case of the Angular
Wedge, because the xy-cross section of a Concave Part is
constant with respect to its own Input System, one can
(without loss of generality) again derive expressions for
relevant quantities using a two-dimensional approach confi
to this plane. Thus (seeFiq. 5b) it suffices to consider
the Concave Part OP 1 P 2 whose exterior center is located at
point 0', whose x and y coordinates with respect to the
Input System of the Concave Part are (xc,Yc). Using the
notation of 3.6.1, the end points of the two straight sid
of the Concave Part Pi = (xl,yl) and P 2 = (12,Y2) are give
by

x, = R, cos t
Yj = R, sin t
x2 = R2 cos T
Y2 = R2 sin T

These coordinates, with respect to a system parallel to th
Input System but centered at (xcYc), are given by

X= X -XC

YL= Y2-yc

Drawing (dotted) lines PO and P 20 defines angles 93 and
94 respectively, measured counterclockwise from the x-axis
in the x'y'-system. These angles are given by

9) 3= tan (yj/xj)

94. = tan (y2/x 2 )

The exterior radius RR may then be found from

RR = /(X 1 ) 2 + (yj ) 2 C

By drawing the (dotted) line PI P 2 in Fiq. 5b it can be
seen that one can represent the Concave Part as the sum of
Angular Wedges 0 PIP 2 and OP1 P 2minus the Basic Part O'p~p2
whose third side is arc PIP 2 . This is essentially the reqi
decomposition of the Concave Part.
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* 3.6.3 Components of the Concave Part

It remains to describe the Positional and Dimensional
* information for each of these three component Parts which

when combined properly constitute the Concave Part. One
can conveniently dist~inguish between the two Angular Wedges
by referring to the first as the "Centered Angular Wedge",
whose Input System is always chosen to coincide with that
of the Concave Part, and the second as the "Exterior Angular
Wedge" whose Tnput System is chosen parallel to the first
but with origin located at thle point (x ,vc,D)-these are
coordinates in the Input System of the Eoncava Part. The
Input System of the Basic Part is chosen to coincide with
that of the Exterior Angular Wedge. Because all these-
Input Systems are parallel, no Rotational information is
necessary; the angular displacements being taken care of by
the angles T and t are considered as Dimensional data.

The three component Parts will be considered individually,
starting with the Exterior Angular Wedge. From Eigures 5a and
5b it can be seen that its length is equal to the length
of the Concave Part, its lower and upper angles are equal
to 9,, and E)3 respectively as given by (72), and both its radii
are equal to RR as in (73). Since it is to be added, its
density is chosen equal to that of the Concave Part. Finally,
since its displacement is taken care of by a translation,
it is set to zero for this Wedge. This description of the
Exterior Angular Wedge can be summarized (notation of 3.5.1
for Angular Wedges in parentheses on the left) as

Length (H = H (Length of the Concave Part)
Lower angle Mt = 9 4
Upper angle MT = 19

¶Displacement (D) = 0) (74)
Radii (R , R2 ) = RR

For the Basic Part, the above description is valid.
Its length equals that of the Concave Part, its angles are
as above, its z-displacemerit is zero, and since it is a sector
of a cylinder, its t,-o end radii are identical and both equal
to RR. Also, it is considered as a Floating Sector (NTYPE~l)
but since it is to be subtracted, its density is chosen
equal to the ~jative of that of the Concave Part.

Once the properties of these two Parts have been computed
(by formulae in 3.1 and 3.5) they can be added to obtain
the properties of the combination of these two Parts (actually
an object with a negative mass, i.e., to be deleted), which
using the formulas in 3.3 can be transformed to the Input
System of the Concave Part via a translation from (xcyclI).
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For the Centered Angular Wedge, its description is
similar to that of the Concave Part itself; its length,
its angles, its displacement and its radii are identical
to that of the overall Concave Part. The properties of
this component can be found using the methods of 3.5, and
can be added to those of the combination of the first two
components to obtain the properties of the oNjerall Concave
Part with respect to its Input System.
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, APPENDIX A - Sample Case 1

This Appendix contains a listing of the input cards,
followed by the output from MOKENTS-Il for Sample Case 1
as described in 1.5.1.

For the data cards, the numbers in the far left
coltunn are card numbers; they are listed here for easier
reference and should not be considered part of the actual
data punched on the iin-ut cards which begins to the right
of the heavy line.
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APPENDIX B - Sample Case 2

This Appendix contains a listing of the input cards,
followed by the output from MOMENTS-II for Sample Case 2
as described in 1.5.2.

For the data cards, the numbers in the far left
column are card numbers; they are listed here for easier
reference and should not be considered part of the actual
data punched on the ini-iit cards which begins to the right
of the heavy line.
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APPENDIX C -Sample Case 3

This Appendix contains a listing of the input cards,
followed by the output from MOMENTS-II for Sample Case 3
as described in 1.5.3.

For the data cards, the numbers in the far left
column are card numbers; they are listed here for easier
reference and should not be considered part of the actual
data punched on the iiRp-t cards which begins to the right
of the heavy line.

145



oNen

cr .;0 CD

tm-, 4p- P, I tt

cc M, N p-
cc C4 %I 4 C.

C-1 1 t; I m~I i

4 Cr Lr L Nt

c P"z Na. 0
w 0. No M0

S4,1 't 14

c -5 - 40 -0 C0 Q 0 l~

(f I

c Ir a~ . CC a t Ual 0 a a a a c mi a4

c C; 0P 0 C C, a. c N 00 io 0 cC
a 0 0 0 0 c '0i0

%c %c cU I CC ,

P-, A,. 2P- a It . *' (% C, !Z I

C M 0J~ M "C. 04 4'O AI n M
C; c C C %C5

Nl ~ C, 4 IN0 1t

XI- C CL

M 1- r% 0l, 00 era clc cog tccrf c*
elm. cu 4.o& w. LI.. 4l m i I%,C l- lm re.. r-C

*0 1C* C 146

141>



W Ir

Lr r-

14



IA

2

0 0

CL C % 00
0 in a

o Ir

Co 0 U 3RE
a- -K w 0

a-.~ 0 E

En~~ ZnU W 4

CL J .~

4AW 0 0 E

ui ) 4 hJ 0

000

414



o *

- 0-

OD CO 0

9-LA i -D M0 
z

oA In 0 n 'a zO

N 4- - C30

~~P a 
P4 0 1 .0 .

- -. ~ ~ n .0 .0In

Ln aD a a

(p a a30 00-

a t a a C

IA-

v =: 0 31 N23

0 N 0 N

- - 1- 1.- a ai

41~~I en0 00 2

W 9L W # a a La

N at 0 N

0 W Ir . S *

w I- ~ I.- aI.0 - 0 - i
- z

cx cx cx z

do- _j _j I- i

i- a 0 03 C) 3 3 a

J .0 .0 .0 z0 w . 0

1.- 2 W M M M W

0 ~~ S149 1



P4 Cma 4

N N n F0 i

m o n r4 m 0 (

cc 0 LA a 0o

co o U U LP P *t

c m No 4 N

4* 1- 4ca
0a

w fl 0

-3 N I1N U

to 0 ~ 0'

04

w
3~ M-

Un 4 n U, * .a A
w 0 (P 0 a- (A

z
0. CL

x 3

Iii

m a m a U a N4

z z

M 150

94FLU



0

* u

z 10 -

N- N

04

- .

LA 0

z 0. 00
- cp 00

0.

0 0 is-

I.--

- N 01

Z j

9% N

* 0

0 0 *150



.4I

In I fl I n nJ

4 4 4 4 4 4 4 D

0. NO %D - a a

LA In N C U

I I 0 0

en 4 C, a 0

I.-

-r N I N N 4 N N '?

CL -0 0 a a j ai a

Lt. a a a a a

I.-

in 0

cu m Lm ' r

15



31- a - -0 -D

4L 4p 4 4 4
x - --

N N t N

S ' c r'

o C -153

77 * *
I- I I S7



-K-

CL!

w

C C

LM 4
3 C,

a co

w *

z
0

*i N

LA z a

0.-
IL z.

45



w

40 0 0

I w 0

ar m u a a a0

o - o aP a

C0 1.. 0
-M DC 00 0ý a. z I

0 ~ t~ 0 a CC 0 0 -

o ~ C It * C:0 f

-~0 ru u . .m

-10 a a. 0009 a 0 00a 00aa I t) C: It

2a * L La nU - - -I --- - - 6 -. - - a

'9 b- a

9 D- 92 in 0 '

o z 0 0 * n@
CL z 0 (L*z sti.

N C in n..

~ Ia %J155

if7l 77"M~-



APPENDIX D - Sample Case 4

This Appendix contains a listing of the input cards,
followed by the output from MOMENTS-II for Sample Case 4
as described in 1.5.4.

For the data cards, the numbers in the far left
column are card numbers; they are listed here for easier
reforence and should not be considered part of the actual
data punched on the input cards which begins to the right
of the heavy line.
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